000022575 001__ 22575
000022575 005__ 20240619092039.0
000022575 0247_ $$2pmid$$apmid:22828339
000022575 0247_ $$2pmc$$apmc:PMC3388209
000022575 0247_ $$2DOI$$a10.1016/j.bpj.2012.05.027
000022575 0247_ $$2WOS$$aWOS:000306088800020
000022575 0247_ $$2MLZ$$aGallat2012129
000022575 0247_ $$2altmetric$$aaltmetric:898478
000022575 037__ $$aPreJuSER-22575
000022575 041__ $$aeng
000022575 082__ $$a570
000022575 084__ $$2WoS$$aBiophysics
000022575 1001_ $$0P:(DE-HGF)0$$aGallat, F.-X.$$b0
000022575 245__ $$aDynamical Coupling of Intrinsically Disordered Proteins and Their Hydration Water: Comparison with Folded Soluble and Membrane Proteins
000022575 260__ $$aNew York, NY$$bRockefeller Univ. Press$$c2012
000022575 300__ $$a129 - 136
000022575 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000022575 3367_ $$2DataCite$$aOutput Types/Journal article
000022575 3367_ $$00$$2EndNote$$aJournal Article
000022575 3367_ $$2BibTeX$$aARTICLE
000022575 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000022575 3367_ $$2DRIVER$$aarticle
000022575 440_0 $$0882$$aBiophysical Journal$$v103$$x0006-3495$$y1
000022575 500__ $$aThis work was supported by the Commissariat a l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, Universite Joseph Fourier, and Agence Nationale de la Recherche (project number ANR-11-BSV5-027 to M. W.). This work benefited from the activities of the DLAB consortium funded by the European Union under contracts HPRI-2001-50065 and RII3-CT-2003-505925, and from UK Engineering and Physical Sciences Research Council-funded activity within the ILL-EMBL Deuteration Laboratory under grants GR/R99393/01 and EP/C015452/1. The study was also supported by the European Commission under the 7th Framework Programme through the Research Infrastructures action of the Capacities Programme, contract CP-CSA_INFRA-2008-1.1.1 number 226507-NMI3. K. W. acknowledges funding from the Access to Major Research Facilities Program, supported by the Commonwealth of Australia under the International Science Linkages Program.
000022575 520__ $$aHydration water is vital for various macromolecular biological activities, such as specific ligand recognition, enzyme activity, response to receptor binding, and energy transduction. Without hydration water, proteins would not fold correctly and would lack the conformational flexibility that animates their three-dimensional structures. Motions in globular, soluble proteins are thought to be governed to a certain extent by hydration-water dynamics, yet it is not known whether this relationship holds true for other protein classes in general and whether, in turn, the structural nature of a protein also influences water motions. Here, we provide insight into the coupling between hydration-water dynamics and atomic motions in intrinsically disordered proteins (IDP), a largely unexplored class of proteins that, in contrast to folded proteins, lack a well-defined three-dimensional structure. We investigated the human IDP tau, which is involved in the pathogenic processes accompanying Alzheimer disease. Combining neutron scattering and protein perdeuteration, we found similar atomic mean-square displacements over a large temperature range for the tau protein and its hydration water, indicating intimate coupling between them. This is in contrast to the behavior of folded proteins of similar molecular weight, such as the globular, soluble maltose-binding protein and the membrane protein bacteriorhodopsin, which display moderate to weak coupling, respectively. The extracted mean square displacements also reveal a greater motional flexibility of IDP compared with globular, folded proteins and more restricted water motions on the IDP surface. The results provide evidence that protein and hydration-water motions mutually affect and shape each other, and that there is a gradient of coupling across different protein classes that may play a functional role in macromolecular activity in a cellular context.
000022575 536__ $$0G:(DE-Juel1)FUEK505$$2G:(DE-HGF)$$aBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung (FUEK505)$$cFUEK505$$x0
000022575 536__ $$0G:(DE-HGF)POF2-544$$a544 - In-house Research with PNI (POF2-544)$$cPOF2-544$$fPOF II$$x1
000022575 536__ $$0G:(EU-Grant)226507$$aNMI3 - Integrated Infrastructure Initiative for Neutron Scattering and Muon Spectroscopy (226507)$$c226507$$fFP7-INFRASTRUCTURES-2008-1$$x2
000022575 588__ $$aDataset connected to Web of Science, Pubmed
000022575 650_7 $$2WoSType$$aJ
000022575 65027 $$0V:(DE-MLZ)SciArea-160$$2V:(DE-HGF)$$aBiology$$x0
000022575 65017 $$0V:(DE-MLZ)GC-130-2016$$2V:(DE-HGF)$$aHealth and Life$$x1
000022575 65017 $$0V:(DE-MLZ)GC-130-1$$2V:(DE-HGF)$$aHealth and Life$$x0
000022575 693__ $$0EXP:(DE-MLZ)SPHERES-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)SPHERES-20140101$$6EXP:(DE-MLZ)NL6S-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz$$eSPHERES: Backscattering spectrometer$$fNL6S$$x0
000022575 7001_ $$0P:(DE-HGF)0$$aLaganowska, A.$$b1
000022575 7001_ $$0P:(DE-HGF)0$$aWood, K.$$b2
000022575 7001_ $$0P:(DE-HGF)0$$aGabel, F.$$b3
000022575 7001_ $$0P:(DE-HGF)0$$avan Eijck, L.$$b4
000022575 7001_ $$0P:(DE-Juel1)131044$$aWuttke, J.$$b5$$uFZJ
000022575 7001_ $$0P:(DE-HGF)0$$aMoulin, M.$$b6
000022575 7001_ $$0P:(DE-HGF)0$$aHärtlein, M.$$b7
000022575 7001_ $$0P:(DE-HGF)0$$aEisenberg, D.$$b8
000022575 7001_ $$0P:(DE-HGF)0$$aColletier, J.-P.$$b9
000022575 7001_ $$0P:(DE-HGF)0$$aZaccai, G.$$b10
000022575 7001_ $$0P:(DE-HGF)0$$aWeik, M.$$b11
000022575 773__ $$0PERI:(DE-600)1477214-0$$a10.1016/j.bpj.2012.05.027$$gVol. 103, p. 129 - 136$$p129 - 136$$q103<129 - 136$$tBiophysical journal$$v103$$x0006-3495$$y2012
000022575 8567_ $$2Pubmed Central$$uhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC3388209
000022575 909CO $$ooai:juser.fz-juelich.de:22575$$pec_fundedresources$$pVDB$$pVDB:MLZ$$popenaire
000022575 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000022575 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000022575 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000022575 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000022575 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000022575 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000022575 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000022575 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000022575 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000022575 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000022575 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000022575 9141_ $$y2012
000022575 9132_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$aDE-HGF$$bForschungsbereich Materie$$lIn-house research on the structure, dynamics and function of matter$$vNeutrons for Research on Condensed Matter$$x0
000022575 9131_ $$0G:(DE-HGF)POF2-544$$1G:(DE-HGF)POF2-540$$2G:(DE-HGF)POF2-500$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bStruktur der Materie$$lForschung mit Photonen, Neutronen, Ionen$$vIn-house Research with PNI$$x0
000022575 9201_ $$0I:(DE-Juel1)ICS-1-20110106$$gICS$$kICS-1$$lNeutronenstreuung$$x0
000022575 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II$$lJCNS-FRM-II$$x1
000022575 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$gJCNS$$kJCNS-1$$lNeutronenstreuung$$x2
000022575 970__ $$aVDB:(DE-Juel1)139239
000022575 980__ $$aVDB
000022575 980__ $$aConvertedRecord
000022575 980__ $$ajournal
000022575 980__ $$aI:(DE-Juel1)ICS-1-20110106
000022575 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000022575 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000022575 980__ $$aUNRESTRICTED
000022575 981__ $$aI:(DE-Juel1)IBI-8-20200312
000022575 981__ $$aI:(DE-Juel1)JCNS-1-20110106
000022575 981__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218