001     22575
005     20240619092039.0
024 7 _ |2 pmid
|a pmid:22828339
024 7 _ |2 pmc
|a pmc:PMC3388209
024 7 _ |2 DOI
|a 10.1016/j.bpj.2012.05.027
024 7 _ |2 WOS
|a WOS:000306088800020
024 7 _ |2 MLZ
|a Gallat2012129
024 7 _ |a altmetric:898478
|2 altmetric
037 _ _ |a PreJuSER-22575
041 _ _ |a eng
082 _ _ |a 570
084 _ _ |2 WoS
|a Biophysics
100 1 _ |0 P:(DE-HGF)0
|a Gallat, F.-X.
|b 0
245 _ _ |a Dynamical Coupling of Intrinsically Disordered Proteins and Their Hydration Water: Comparison with Folded Soluble and Membrane Proteins
260 _ _ |a New York, NY
|b Rockefeller Univ. Press
|c 2012
300 _ _ |a 129 - 136
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 882
|a Biophysical Journal
|v 103
|x 0006-3495
|y 1
500 _ _ |a This work was supported by the Commissariat a l'Energie Atomique et aux Energies Alternatives, Centre National de la Recherche Scientifique, Universite Joseph Fourier, and Agence Nationale de la Recherche (project number ANR-11-BSV5-027 to M. W.). This work benefited from the activities of the DLAB consortium funded by the European Union under contracts HPRI-2001-50065 and RII3-CT-2003-505925, and from UK Engineering and Physical Sciences Research Council-funded activity within the ILL-EMBL Deuteration Laboratory under grants GR/R99393/01 and EP/C015452/1. The study was also supported by the European Commission under the 7th Framework Programme through the Research Infrastructures action of the Capacities Programme, contract CP-CSA_INFRA-2008-1.1.1 number 226507-NMI3. K. W. acknowledges funding from the Access to Major Research Facilities Program, supported by the Commonwealth of Australia under the International Science Linkages Program.
520 _ _ |a Hydration water is vital for various macromolecular biological activities, such as specific ligand recognition, enzyme activity, response to receptor binding, and energy transduction. Without hydration water, proteins would not fold correctly and would lack the conformational flexibility that animates their three-dimensional structures. Motions in globular, soluble proteins are thought to be governed to a certain extent by hydration-water dynamics, yet it is not known whether this relationship holds true for other protein classes in general and whether, in turn, the structural nature of a protein also influences water motions. Here, we provide insight into the coupling between hydration-water dynamics and atomic motions in intrinsically disordered proteins (IDP), a largely unexplored class of proteins that, in contrast to folded proteins, lack a well-defined three-dimensional structure. We investigated the human IDP tau, which is involved in the pathogenic processes accompanying Alzheimer disease. Combining neutron scattering and protein perdeuteration, we found similar atomic mean-square displacements over a large temperature range for the tau protein and its hydration water, indicating intimate coupling between them. This is in contrast to the behavior of folded proteins of similar molecular weight, such as the globular, soluble maltose-binding protein and the membrane protein bacteriorhodopsin, which display moderate to weak coupling, respectively. The extracted mean square displacements also reveal a greater motional flexibility of IDP compared with globular, folded proteins and more restricted water motions on the IDP surface. The results provide evidence that protein and hydration-water motions mutually affect and shape each other, and that there is a gradient of coupling across different protein classes that may play a functional role in macromolecular activity in a cellular context.
536 _ _ |0 G:(DE-Juel1)FUEK505
|2 G:(DE-HGF)
|x 0
|c FUEK505
|a BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung (FUEK505)
536 _ _ |a 544 - In-house Research with PNI (POF2-544)
|0 G:(DE-HGF)POF2-544
|c POF2-544
|x 1
|f POF II
536 _ _ |a NMI3 - Integrated Infrastructure Initiative for Neutron Scattering and Muon Spectroscopy (226507)
|0 G:(EU-Grant)226507
|c 226507
|x 2
|f FP7-INFRASTRUCTURES-2008-1
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 7 |2 WoSType
|a J
650 2 7 |a Biology
|0 V:(DE-MLZ)SciArea-160
|2 V:(DE-HGF)
|x 0
650 1 7 |a Health and Life
|0 V:(DE-MLZ)GC-130-2016
|2 V:(DE-HGF)
|x 1
650 1 7 |a Health and Life
|0 V:(DE-MLZ)GC-130-1
|2 V:(DE-HGF)
|x 0
693 _ _ |0 EXP:(DE-MLZ)SPHERES-20140101
|1 EXP:(DE-MLZ)FRMII-20140101
|5 EXP:(DE-MLZ)SPHERES-20140101
|6 EXP:(DE-MLZ)NL6S-20140101
|a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e SPHERES: Backscattering spectrometer
|f NL6S
|x 0
700 1 _ |0 P:(DE-HGF)0
|a Laganowska, A.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Wood, K.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Gabel, F.
|b 3
700 1 _ |0 P:(DE-HGF)0
|a van Eijck, L.
|b 4
700 1 _ |0 P:(DE-Juel1)131044
|a Wuttke, J.
|b 5
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Moulin, M.
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Härtlein, M.
|b 7
700 1 _ |0 P:(DE-HGF)0
|a Eisenberg, D.
|b 8
700 1 _ |0 P:(DE-HGF)0
|a Colletier, J.-P.
|b 9
700 1 _ |0 P:(DE-HGF)0
|a Zaccai, G.
|b 10
700 1 _ |0 P:(DE-HGF)0
|a Weik, M.
|b 11
773 _ _ |0 PERI:(DE-600)1477214-0
|a 10.1016/j.bpj.2012.05.027
|g Vol. 103, p. 129 - 136
|p 129 - 136
|q 103<129 - 136
|t Biophysical journal
|v 103
|x 0006-3495
|y 2012
856 7 _ |2 Pubmed Central
|u http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3388209
909 C O |o oai:juser.fz-juelich.de:22575
|p openaire
|p VDB:MLZ
|p VDB
|p ec_fundedresources
913 2 _ |0 G:(DE-HGF)POF3-623
|1 G:(DE-HGF)POF3-620
|2 G:(DE-HGF)POF3-600
|a DE-HGF
|b Forschungsbereich Materie
|l In-house research on the structure, dynamics and function of matter
|v Neutrons for Research on Condensed Matter
|x 0
913 1 _ |x 0
|v In-house Research with PNI
|1 G:(DE-HGF)POF2-540
|0 G:(DE-HGF)POF2-544
|2 G:(DE-HGF)POF2-500
|a DE-HGF
|b Struktur der Materie
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Forschung mit Photonen, Neutronen, Ionen
914 1 _ |y 2012
915 _ _ |0 StatID:(DE-HGF)0010
|2 StatID
|a JCR/ISI refereed
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)1030
|2 StatID
|a DBCoverage
|b Current Contents - Life Sciences
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
920 1 _ |0 I:(DE-Juel1)ICS-1-20110106
|g ICS
|k ICS-1
|l Neutronenstreuung
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II
|l JCNS-FRM-II
|x 1
920 1 _ |0 I:(DE-Juel1)JCNS-1-20110106
|g JCNS
|k JCNS-1
|l Neutronenstreuung
|x 2
970 _ _ |a VDB:(DE-Juel1)139239
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ICS-1-20110106
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-Juel1)JCNS-1-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-8-20200312
981 _ _ |a I:(DE-Juel1)JCNS-1-20110106
981 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21