000022627 001__ 22627
000022627 005__ 20180210122618.0
000022627 0247_ $$2DOI$$a10.1016/j.physc.2011.12.018
000022627 0247_ $$2WOS$$aWOS:000308580600015
000022627 037__ $$aPreJuSER-22627
000022627 041__ $$aeng
000022627 082__ $$a530
000022627 084__ $$2WoS$$aPhysics, Applied
000022627 1001_ $$0P:(DE-Juel1)128749$$aWördenweber, R.$$b0$$uFZJ
000022627 245__ $$aFlux transport in nanostructured high-Tc films at microwave frequencies
000022627 260__ $$aAmsterdam$$bNorth-Holland Physics Publ.$$c2012
000022627 300__ $$a69 - 73
000022627 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000022627 3367_ $$2DataCite$$aOutput Types/Journal article
000022627 3367_ $$00$$2EndNote$$aJournal Article
000022627 3367_ $$2BibTeX$$aARTICLE
000022627 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000022627 3367_ $$2DRIVER$$aarticle
000022627 440_0 $$04908$$aPhysica C$$v479$$x0921-4534
000022627 500__ $$3POF3_Assignment on 2016-02-29
000022627 500__ $$aThe authors would like to thank A. Offenhauser, V. Misko, T. Grellmann, K. Greben, and H. P. Bochem for their valuable support. This work was supported by the ESF program "Nanoscience and Engineering in Superconductivity - NES".
000022627 520__ $$aThe understanding of flux transport in micro-and nanostructured superconducting systems that are exposed to an electromagnetic field at microwave frequencies is of interest for basic aspects of vortex matter and for potential application of superconductivity in fluxonic devices. We report on the combination of dc and microwave electronic measurements on submicron-patterned high-T-c films. The frequency dependence of the forward transmission coefficient S-21 indicates that the mechanism of flux transport depends on the velocity of vortices. At low frequencies, flux transport via Abrikosov vortices is present leading to additional microwave losses. Above a geometrically defined frequency, a different, loss-free mechanism seems to be responsible for flux transport. This mechanism most likely represents a phase-slip type of mechanism. The limiting vortex velocity obtained from the frequencies dependence of the microwave properties agrees with the Larkin-Ovchinnikov critical vortex velocity determined via dc pulse measurements. In spite of the change of mechanism, guidance of flux persists in these nano-patterns up to high frequencies. (C) 2012 Elsevier B.V. All rights reserved.
000022627 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000022627 588__ $$aDataset connected to Web of Science
000022627 650_7 $$2WoSType$$aJ
000022627 65320 $$2Author$$aVortex matter
000022627 65320 $$2Author$$aVortex manipulation
000022627 65320 $$2Author$$aCritical velocity of vortices
000022627 65320 $$2Author$$aAntidots
000022627 65320 $$2Author$$aHigh-T-c films
000022627 7001_ $$0P:(DE-Juel1)VDB8300$$aHollmann, E.$$b1$$uFZJ
000022627 7001_ $$0P:(DE-Juel1)128631$$aSchubert, J.$$b2$$uFZJ
000022627 7001_ $$0P:(DE-Juel1)VDB5692$$aKutzner, R.$$b3$$uFZJ
000022627 7001_ $$0P:(DE-Juel1)128715$$aPanaitov, G.$$b4$$uFZJ
000022627 773__ $$0PERI:(DE-600)1467152-9$$a10.1016/j.physc.2011.12.018$$gVol. 479, p. 69 - 73$$p69 - 73$$q479<69 - 73$$tPhysica / C$$v479$$x0921-4534$$y2012
000022627 8567_ $$uhttp://dx.doi.org/10.1016/j.physc.2011.12.018
000022627 909CO $$ooai:juser.fz-juelich.de:22627$$pVDB
000022627 9131_ $$0G:(DE-Juel1)FUEK412$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000022627 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x0
000022627 9141_ $$y2012
000022627 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000022627 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000022627 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000022627 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000022627 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000022627 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000022627 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000022627 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000022627 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences
000022627 9201_ $$0I:(DE-Juel1)PGI-8-20110106$$gPGI$$kPGI-8$$lBioelektronik$$x0
000022627 9201_ $$0I:(DE-82)080009_20140620$$gJARA$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x1
000022627 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$gPGI$$kPGI-9$$lHalbleiter-Nanoelektronik$$x2
000022627 970__ $$aVDB:(DE-Juel1)139305
000022627 980__ $$aVDB
000022627 980__ $$aConvertedRecord
000022627 980__ $$ajournal
000022627 980__ $$aI:(DE-Juel1)PGI-8-20110106
000022627 980__ $$aI:(DE-82)080009_20140620
000022627 980__ $$aI:(DE-Juel1)PGI-9-20110106
000022627 980__ $$aUNRESTRICTED
000022627 981__ $$aI:(DE-Juel1)PGI-9-20110106
000022627 981__ $$aI:(DE-Juel1)VDB881