001     22688
005     20200604163629.0
024 7 _ |2 DOI
|a 10.1063/1.4737442
024 7 _ |2 WOS
|a WOS:000306748000011
024 7 _ |2 Handle
|a 2128/7572
037 _ _ |a PreJuSER-22688
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Applied
100 1 _ |0 P:(DE-Juel1)128613
|a Mikulics, M.
|b 0
|u FZJ
245 _ _ |a Subpicosecond electronhole recombination time and terahertz-bandwidth photoresponse in freestanding GaAs epitaxial mesoscopic structures
260 _ _ |a Melville, NY
|b American Institute of Physics
|c 2012
300 _ _ |a 031111
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
440 _ 0 |0 562
|a Applied Physics Letters
|v 101
|x 0003-6951
|y 3
500 _ _ |3 POF3_Assignment on 2016-02-29
500 _ _ |a The authors thank P. Song and M. Samuels for their assistance in some experiments. This work was supported in part by NSF Grant No. ECCS-0901701 (Rochester). J.Z. and J.S. acknowledge support from the Frank Horton Graduate Fellowship Program at the University of Rochester's Laboratory for Laser Energetics, funded by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-08NA28302 and the New York State Energy Research and Development Authority. The support of NSF and DOE does not constitute their endorsement of the views expressed in this article.
520 _ _ |a We present the ultrafast (THz-bandwidth) photoresponse from GaAs single-crystal mesoscopic structures, such as freestanding whiskers and platelets fabricated by the top-down technique, transferred onto a substrate of choice, and incorporated into a coplanar strip line. We recorded electrical transients as short as similar to 600 fs from an individual whisker photodetector. Analysis of the frequency spectrum of the photoresponse electrical signal showed that, intrinsically, our device was characterized by an similar to 150-fs carrier lifetime and an overall 320-fs response. The corresponding 3-dB frequency bandwidth was 1.3 THz-the highest bandwidth ever reported for a GaAs-based photodetector. Simultaneously, as high-quality, epitaxially grown crystals, our GaAs structures exhibited mobility values as high as similar to 7300 cm(2)/V.s, extremely low dark currents, and similar to 7% intrinsic detection efficiency, which, together with their experimentally measured photoresponse repetition time of similar to 1 ps, makes them uniquely suitable for terahertz-frequency optoelectronic applications, ranging from ultrafast photon detectors and counters to THz-bandwidth optical-to-electrical transducers and photomixers. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4737442]
536 _ _ |0 G:(DE-Juel1)FUEK412
|2 G:(DE-HGF)
|a Grundlagen für zukünftige Informationstechnologien
|c P42
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
700 1 _ |0 P:(DE-HGF)0
|a Zhang, J.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Serafini, J.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Adam, R.
|b 3
700 1 _ |0 P:(DE-Juel1)125588
|a Grützmacher, D.
|b 4
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Sobolewski, R.
|b 5
773 _ _ |0 PERI:(DE-600)1469436-0
|a 10.1063/1.4737442
|g Vol. 101, p. 031111
|p 031111
|q 101<031111
|t Applied physics letters
|v 101
|x 0003-6951
|y 2012
856 7 _ |u http://dx.doi.org/10.1063/1.4737442
856 4 _ |u https://juser.fz-juelich.de/record/22688/files/FZJ-22688.pdf
|y Published under German "Allianz" Licensing conditions on 2012-07-18. Available in OpenAccess from 2012-07-18
|z Published final document.
856 4 _ |u https://juser.fz-juelich.de/record/22688/files/FZJ-22688.jpg?subformat=icon-1440
|x icon-1440
856 4 _ |u https://juser.fz-juelich.de/record/22688/files/FZJ-22688.jpg?subformat=icon-180
|x icon-180
856 4 _ |u https://juser.fz-juelich.de/record/22688/files/FZJ-22688.jpg?subformat=icon-640
|x icon-640
909 C O |o oai:juser.fz-juelich.de:22688
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 1 _ |0 G:(DE-Juel1)FUEK412
|1 G:(DE-HGF)POF2-420
|2 G:(DE-HGF)POF2-400
|a DE-HGF
|b Schlüsseltechnologien
|k P42
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|v Grundlagen für zukünftige Informationstechnologien
|x 0
913 2 _ |0 G:(DE-HGF)POF3-529H
|1 G:(DE-HGF)POF3-520
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|v Addenda
|x 0
914 1 _ |y 2012
915 _ _ |0 StatID:(DE-HGF)0010
|2 StatID
|a JCR/ISI refereed
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0400
|2 StatID
|a Allianz-Lizenz / DFG
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0520
|2 StatID
|a Allianz-OA
915 _ _ |0 StatID:(DE-HGF)1020
|2 StatID
|a DBCoverage
|b Current Contents - Social and Behavioral Sciences
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|g PGI
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|g JARA
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|x 1
970 _ _ |a VDB:(DE-Juel1)139395
980 1 _ |a FullTexts
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
980 _ _ |a JUWEL
980 _ _ |a FullTexts
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21