000022702 001__ 22702
000022702 005__ 20240529111647.0
000022702 0247_ $$2pmid$$apmid:22871811
000022702 0247_ $$2pmc$$apmc:PMC3432460
000022702 0247_ $$2DOI$$a10.1038/ncomms1989
000022702 0247_ $$2WOS$$aWOS:000308801100008
000022702 0247_ $$2MLZ$$aChangOSKTYKL2011
000022702 0247_ $$2altmetric$$aaltmetric:872388
000022702 0247_ $$2ISSN$$a2041-1723
000022702 037__ $$aPreJuSER-22702
000022702 041__ $$aeng
000022702 082__ $$a500
000022702 084__ $$2WoS$$aMultidisciplinary Sciences
000022702 1001_ $$0P:(DE-HGF)0$$aChang, L.-J.$$b0
000022702 245__ $$aHiggs transition from a manetic Coulomb liquid to a ferromagnet in Yb2Ti2O7
000022702 260__ $$aLondon$$bNature Publishing Group$$c2012
000022702 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000022702 3367_ $$2DataCite$$aOutput Types/Journal article
000022702 3367_ $$00$$2EndNote$$aJournal Article
000022702 3367_ $$2BibTeX$$aARTICLE
000022702 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000022702 3367_ $$2DRIVER$$aarticle
000022702 440_0 $$025205$$aNature Communications$$v3$$y992
000022702 500__ $$3POF3_Assignment on 2016-02-29
000022702 500__ $$aWe thank J.S. Gardner, B.D. Gaulin and A. Yaouanc for discussions. We thank Harald Schneider for technical supports in the neutron scattering experiments. We acknowledge Chih-Wen Pao and other staff of BL07A of the NSRRC who helped perform the EXAFS measurements. This work is partially supported by National Science Council, Taiwan, under grants no. NSC 96-2739-M-213-001, NSC 99-2112M-007-020 (L.J.C.), NSC 100-2112-M-002-013-MY3, NSC-99-2120-M-002-005 (Y.J.K.), by NTU under grant no. 10R80909-4 (Y.J.K.), and by grants-in-aid for Scientific Research under grant no. 21740275 and no. 24740253 from Japan Society for the Promotion of Science (S.O.) and under grant no. 19052006 (S.O.) and no. 19052004 (K.K.) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.
000022702 520__ $$aIn a class of frustrated magnets known as spin ice, magnetic monopoles emerge as classical defects and interact via the magnetic Coulomb law. With quantum-mechanical interactions, these magnetic charges are carried by fractionalized bosonic quasi-particles, spinons, which can undergo Bose-Einstein condensation through a first-order transition via the Higgs mechanism. Here, we report evidence of a Higgs transition from a magnetic Coulomb liquid to a ferromagnet in single-crystal Yb(2)Ti(2)O(7). Polarized neutron scattering experiments show that the diffuse [111]-rod scattering and pinch-point features, which develop on cooling are suddenly suppressed below T(C)~0.21 K, where magnetic Bragg peaks and a full depolarization of the neutron spins are observed with thermal hysteresis, indicating a first-order ferromagnetic transition. Our results are explained on the basis of a quantum spin-ice model, whose high-temperature phase is effectively described as a magnetic Coulomb liquid, whereas the ground state shows a nearly collinear ferromagnetism with gapped spin excitations.
000022702 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000022702 588__ $$aDataset connected to Web of Science, Pubmed
000022702 650_7 $$2WoSType$$aJ
000022702 65027 $$0V:(DE-MLZ)SciArea-170$$2V:(DE-HGF)$$aMagnetism$$x0
000022702 65017 $$0V:(DE-MLZ)GC-2004-2016$$2V:(DE-HGF)$$aBasic research$$x1
000022702 65017 $$0V:(DE-MLZ)GC-180$$2V:(DE-HGF)$$aOthers$$x0
000022702 693__ $$0EXP:(DE-MLZ)DNS-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)DNS-20140101$$6EXP:(DE-MLZ)NL6S-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz$$eDNS: Diffuse scattering neutron time of flight spectrometer$$fNL6S$$x0
000022702 7001_ $$0P:(DE-HGF)0$$aOnoda, S.$$b1
000022702 7001_ $$0P:(DE-Juel1)130991$$aSu, Y.$$b2$$uFZJ
000022702 7001_ $$0P:(DE-HGF)0$$aKao, Y.-J.$$b3
000022702 7001_ $$0P:(DE-HGF)0$$aTsuei, K.-D.$$b4
000022702 7001_ $$0P:(DE-HGF)0$$aYasui, Y.$$b5
000022702 7001_ $$0P:(DE-HGF)0$$aKakurai, K.$$b6
000022702 7001_ $$0P:(DE-HGF)0$$aLees, M.R.$$b7
000022702 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/ncomms1989$$gVol. 3$$nArticle number: 992$$q3$$tNature Communications$$v3$$x2041-1723$$y2012
000022702 8567_ $$2Pubmed Central$$uhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC3432460
000022702 909CO $$ooai:juser.fz-juelich.de:22702$$pVDB$$pVDB:MLZ
000022702 9141_ $$y2012
000022702 9131_ $$0G:(DE-Juel1)FUEK412$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000022702 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x0
000022702 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$gPGI$$kPGI-4$$lStreumethoden$$x0
000022702 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II$$lJCNS-FRM-II$$x1
000022702 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$gJCNS$$kJCNS-2$$lStreumethoden$$x2
000022702 970__ $$aVDB:(DE-Juel1)139410
000022702 980__ $$aVDB
000022702 980__ $$aConvertedRecord
000022702 980__ $$ajournal
000022702 980__ $$aI:(DE-Juel1)PGI-4-20110106
000022702 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000022702 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000022702 980__ $$aUNRESTRICTED
000022702 981__ $$aI:(DE-Juel1)JCNS-2-20110106
000022702 981__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000022702 981__ $$aI:(DE-Juel1)JCNS-2-20110106