001     22724
005     20180210130936.0
024 7 _ |2 DOI
|a 10.1063/1.4742326
024 7 _ |2 WOS
|a WOS:000307862400032
024 7 _ |2 Handle
|a 2128/7581
037 _ _ |a PreJuSER-22724
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Applied
100 1 _ |0 P:(DE-HGF)0
|a Frielinghaus, R.
|b 0
245 _ _ |a Monitoring structural influences on quantum transport in InAs nanowires
260 _ _ |a Melville, NY
|b American Institute of Physics
|c 2012
300 _ _ |a 062104
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 562
|a Applied Physics Letters
|v 101
|x 0003-6951
|y 6
500 _ _ |3 POF3_Assignment on 2016-02-29
500 _ _ |a We thank Martin Schuck and Herbert Kertz for measurement support, Beata Kardynal for fruitful discussions, and Falk Dorn for recording the TEM images. We also acknowledge financial support from the DFG Forschergruppe 912 and from the RWTH Aachen via an ERS seed fund.
520 _ _ |a A sample design that allows for quantum transport and transmission electron microscopy (TEM) on individual suspended nanostructures is used to investigate moderately n-type doped InAs nanowires (NWs). The nanowires were grown by metal organic vapor phase epitaxy. Universal conductance fluctuations in the nanowires are investigated at temperatures down to 0.35 K. These fluctuations show two different temperature dependences. The very same nanowire segments investigated in transport are subsequently analyzed by TEM revealing crystal phase mixing. However, we find no correspondence between the atomic structure of the wires and the temperature dependences of the conductance fluctuations. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4742326]
536 _ _ |0 G:(DE-Juel1)FUEK412
|2 G:(DE-HGF)
|a Grundlagen für zukünftige Informationstechnologien
|c P42
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
700 1 _ |0 P:(DE-HGF)0
|a Flohr, K.
|b 1
700 1 _ |0 P:(DE-Juel1)VDB86963
|a Sladek, K.
|b 2
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB97618
|a Weirich, T.E.
|b 3
|u FZJ
700 1 _ |0 P:(DE-Juel1)128856
|a Trellenkamp, S.
|b 4
|u FZJ
700 1 _ |0 P:(DE-Juel1)125593
|a Hardtdegen, H.
|b 5
|u FZJ
700 1 _ |0 P:(DE-Juel1)128634
|a Schäpers, T.
|b 6
|u FZJ
700 1 _ |0 P:(DE-Juel1)130948
|a Schneider, Claus Michael
|b 7
700 1 _ |0 P:(DE-Juel1)130948
|a Meyer, Carola
|b 8
773 _ _ |0 PERI:(DE-600)1469436-0
|a 10.1063/1.4742326
|g Vol. 101, p. 062104
|p 062104
|q 101<062104
|t Applied physics letters
|v 101
|x 0003-6951
|y 2012
856 7 _ |u http://dx.doi.org/10.1063/1.4742326
856 4 _ |u https://juser.fz-juelich.de/record/22724/files/FZJ-22724.pdf
|y Published under German "Allianz" Licensing conditions on 2012-08-08. Available in OpenAccess from 2012-08-08
|z Published final document.
856 4 _ |u https://juser.fz-juelich.de/record/22724/files/FZJ-22724.jpg?subformat=icon-1440
|x icon-1440
856 4 _ |u https://juser.fz-juelich.de/record/22724/files/FZJ-22724.jpg?subformat=icon-180
|x icon-180
856 4 _ |u https://juser.fz-juelich.de/record/22724/files/FZJ-22724.jpg?subformat=icon-640
|x icon-640
909 C O |o oai:juser.fz-juelich.de:22724
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 1 _ |0 G:(DE-Juel1)FUEK412
|1 G:(DE-HGF)POF2-420
|2 G:(DE-HGF)POF2-400
|a DE-HGF
|b Schlüsseltechnologien
|k P42
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|v Grundlagen für zukünftige Informationstechnologien
|x 0
913 2 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-529H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 0
914 1 _ |y 2012
915 _ _ |0 StatID:(DE-HGF)0010
|2 StatID
|a JCR/ISI refereed
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0400
|2 StatID
|a Allianz-Lizenz / DFG
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0520
|2 StatID
|a Allianz-OA
915 _ _ |0 StatID:(DE-HGF)1020
|2 StatID
|a DBCoverage
|b Current Contents - Social and Behavioral Sciences
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 2
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|g PGI
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-6-20110106
|k PGI-6
|l Elektronische Eigenschaften
|g PGI
|x 1
970 _ _ |a VDB:(DE-Juel1)139456
980 1 _ |a FullTexts
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-6-20110106
980 _ _ |a JUWEL
980 _ _ |a FullTexts
981 _ _ |a I:(DE-Juel1)PGI-9-20110106
981 _ _ |a I:(DE-Juel1)PGI-6-20110106
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21