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A sample design that allows for quantum transport and transmission electron microscopy (TEM) on

individual suspended nanostructures is used to investigate moderately n-type doped InAs nanowires

(NWs). The nanowires were grown by metal organic vapor phase epitaxy. Universal conductance

fluctuations in the nanowires are investigated at temperatures down to 0.35 K. These fluctuations show

two different temperature dependences. The very same nanowire segments investigated in transport are

subsequently analyzed by TEM revealing crystal phase mixing. However, we find no correspondence

between the atomic structure of the wires and the temperature dependences of the conductance

fluctuations. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4742326]

Self-assembled semiconductor nanowires (NWs) receive

a considerable interest as possible candidates for future

nanoelectronic devices.1–3 Here, some III/V compounds with

a low bandgap as, e.g., InAs, InN, or InSb exhibit a surface

accumulation layer that leads to Schottky-barrier free con-

tacts what in turn facilitates integration.4–6 Besides this

application-driven research, various fundamental quantum

effects can be studied in these material systems. Confinement

and interference effects start to dominate the electronic trans-

port at cryogenic temperatures, and single-electron tunneling

or phase coherent transport can be observed.7–9

However, there are two factors inherent in the device ge-

ometry that greatly influence standard transport experiments

and result in an experimental fingerprint for each nanowire.

First, the high aspect ratio and enhanced surface conduction

lead to an increased sensitivity to the environment. This can

be used, e.g., for gas sensing10 but may also be obstructive,

since the substrate can affect the transport considerably. Sec-

ond, an usually unknown defect distribution individual for

each nanowire is used to explain many quantum interference

effects and transport phenomena.8,11,12

In this Letter, we use a sample design where individual

InAs nanowires are suspended across holes in a Si3N4 trans-

mission electron microscopy (TEM) membrane. The NWs

are subsequently contacted and universal conductance fluctu-

ations (UCFs) are measured at cryogenic temperatures. We

find highly reproducible fluctuation patterns and clear tem-

perature dependences as we do not have any substrate influ-

ence in our suspended geometry. Two distinct temperature

dependences of the phase coherence length are observed in a

set of four wires. We correlate these transport data with the

atomic structure of the NWs obtained in a successive TEM

measurement on the very same wire section.

This approach has two advantages. In the suspended ge-

ometry, all substrate effects on the transport can be excluded.

Although previous measurements6 found a similar crystal

structure in a set of NWs, there is still a certain spread. A

wire-to-wire comparison of these data may reveal a connec-

tion that could remain unnoticed otherwise.

InAs nanowires were grown on a GaAs (111)B substrate

by selective-area metal-organic vapour phase epitaxy (SA-

MOVPE) and moderately n-doped by Si incorporation.13 A

pressure ratio of dopant versus group III precursor of

pðSi2H6Þ=pðTMInÞ ¼ 7:5 � 10�3 was chosen (doping factor

100 in Ref. 6). The resulting NWs have a diameter of

110 nm and a length of about 4 lm. A room-temperature re-

sistivity of q � 200 lX �m and a carrier concentration of

n � 1 � 1018 cm�3 were obtained from previous measure-

ments6 on NWs of similar growth conditions. We estimate

the contact resistances with these values and the results from

the multiterminal wires.

Individual as-grown NWs were mechanically removed

from the GaAs growth substrate with an In needle and selec-

tively placed across holes of a TEM membrane.14 All NWs

were chosen from within an area of about only 20� 20 lm2

edge length, so their individual growth conditions were

expected to be very similar. The TEM membrane was a perfo-

rated DuraSiN DTM-25232 with a coordinate system previ-

ously fabricated by electron beam lithography consisting of

Ti/Pt markers (5 nm / 60 nm). Individual Ti/Au (10 nm /

120 nm) contacts to the nanowires were again lithographically

defined. The NWs were exposed to an oxygen ion beam and

to an Arþ plasma prior to metal evaporation to ensure a good

contact transparency. The lithography on the membranes is

described in more detail elsewhere.15 TEM images of the sam-

ples were acquired in an FEI Tecnai F20 at an acceleration

voltage of 200 kV after the transport measurements.

We prepared four samples in this manner, each having a

suspended length of around 1 lm. A scanning electron

micrograph of one of the NWs (wire A) is depicted in Fig. 1.

The other devices are built in a three- (wire D) and

two-terminal configuration (wires B and C). The transporta)Electronic mail: r.frielinghaus@fz-juelich.de.
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measurements were conducted in a He-3 cryostat at tempera-

tures between 0.35 K and 30 K. The resistance was measured

using a standard lock-in technique with an ac bias of 20 nA

(wire B), 30 nA (wires C and D), and 50 nA (wire A). A con-

tact scheme for the four-terminal case is indicated in Fig. 1.

A magnetic field up to 7 T was applied perpendicular to the

wire axis.

The magnetoconductance fluctuates as a function of

the magnetic field at low temperatures as can be seen in

Fig. 2(a). To quantify the fluctuation dG ¼ G� G0, we sub-

tract a slowly varying background G0 from the wire conduct-

ance, which is in turn determined from the measured wire

resistance after subtracting any contact resistances. An ex-

emplary pattern is depicted in the left part of Fig. 2(a). The

pattern reproduces itself with a decreasing root mean square

of the amplitude, rdG
, upon increasing the temperature (right

part of Fig. 2(a)). This variation in magnetoconductance can

be attributed to UCFs.16,17 The amplitude stays constant up

to 1 K and decreases exponentially as T�0:7060:04 for T � 2 K

for all wires (Fig. 2(b)). This can be explained with the

phase-coherence length lu being comparable or longer than

the contact separation at T � 1 K as discussed below. For

T � 2 K, two effects divide the wire into several smaller

phase-coherent sections. First, small energy transfer

electron-electron scattering (Nyquist mechanism) dephases

the electrons.18 Second, thermal broadening leads to an

interference of several states contributing to the transport.

The latter can be quantified by the thermal length,

lT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�hD=kBT

p
, with D being the diffusion constant.

The phase-coherence length lu can be determined from

the correlation field BC. The latter is defined via the

autocorrelation function, f ðDBÞ ¼ hdGðBþ DBÞdGðBÞiB,

with f ðBCÞ :¼ 1
2

f ð0Þ. Here, h…iB denotes the average over

the magnetic field. A dependence

lu ¼ cU0=ðdBCÞ (1)

is predicted for channels with d < lu as in our case.17,19

Here, d is the channel width (the diameter, in our samples),

U0 ¼ h=e the magnetic flux quantum, and c a proportionality

constant between 0.42 and 0.95 for lT � lu and lT 	 lu,

respectively.

The phase-coherence length determined from BC is dis-

played in the Fig. 2(c). We observe a similar behavior as

with the UCF amplitude, i.e., a saturation below 1 K and an

exponential decrease above 3 K for three wires. Only lu of

wire C starts decreasing at lower temperatures. We find a

quantitative agreement of maxðluÞ with the contact separa-

tion length L for all wires if we assume c � 2. This agree-

ment confirms our above assumption that the entire wire

sections between the contacts are phase-coherent for

T � 1 K.

The determined value for c is about two times larger

than predicted, since it is at least lT � 0:2lu for all wires and

temperatures. The theories used in this Letter have been

FIG. 1. Scanning electron micrograph of wire A with a schematics of the

configuration used in the transport measurements. Scale bar is 1 lm. The

color scale of the secondary electron yield is inverted for clarity. A TEM

image of the marked middle section is displayed in Fig. 3.

FIG. 2. (a) Universal conductance fluctuation pattern dG of wire A in units

of e2=h as a function of magnetic field and temperature. The curve on the

left side shows the conductance fluctuations at 0.35 K. (b) UCF amplitude

rdG
vs T of the investigated suspended wires. The dashed lines indicate

the maximum constant amplitude when the entire wire is phase-coherent.

The solid lines represent the fitted temperature dependences above 3 K. The

dash-dotted line is the UCF amplitude calculated from the phase-coherence

length lu using Eq. (2). (c) lu vs T determined from the correlation field BC.

The solid lines are the fitted exponential temperature dependences. The

dashed horizontal lines indicate the contact separation length.
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developed for wires made from two-dimensional planar elec-

tron gases, i.a., they do not account for flux cancellation

effects owing to the cylindrical shape of our NWs and

recently reported in InAs NWs grown by molecular beam

epitaxy (MBE).9 This flux cancellation leads to an overesti-

mation of BC, which in turn increases the value of c. A value

of c � 1:4 was obtained for the MBE-grown NWs, which is

close to our finding c � 2 for MOVPE-grown samples. The

difference can be explained by the fact that the former were

measured in the lT � lu regime where c is expected to be

smaller.17,19

We observe two distinct dephasing rates of lu upon

increasing the temperature. We obtain lu 
 T�0:5 for wires A
and B while lu in wires C and D decays with T�0:3. In con-

trast, the decrease of the UCF amplitude is predicted to

depend mainly on lT in the regime of lT 	 lu 	 L as it is

the case for T � 3 K. It is17,19

rdG
¼ b

e2

h

lT

L

ffiffiffiffi
lu
L

r
(2)

with b ¼
ffiffiffiffiffiffiffiffiffiffi
8p=3

p
. Again our data fits nicely to the theoretical

prediction as shown in Fig. 2(b). However, we have to mod-

ify b similar to c by a factor between 0.5 (wire A) and 2

(wire B) to obtain a quantitative agreement. The reason for

the distinct prefactors is likely a slight deviation of the real

contact resistances to the estimated values. A geometrical

effect as in the discussion of lu above may lead to an addi-

tional constant deviation of b.

We can estimate the error on the various fitting parame-

ters like c and the decay exponents to be around 10% from a

repetitive measurement after one thermal cycle to room

temperature.

The origin of the different temperature dependences is

unclear at this point. We can neglect all detrimental substrate

effects due to the suspended geometry of our samples. Thus,

this origin can only lie within the structure of the wires them-

selves. The devices show no difference on the length scales

accessible in scanning electron microscopy. Therefore, we

take advantage of our sample design and use TEM to investi-

gate if the atomic structure of the wires has an influence on

the UCFs and on the different dephasing rates of lu. These

measurements were performed as a last step to avoid any

influence of the transport properties by the defects possibly

induced from the electron beam irradiation. A low-

magnification image stitched from 18 individual micrographs

of the suspended part of wire A is shown in Fig. 3. The edges

of the inner contacts can be seen at the image borders. The

vertical fringes are due to stacking faults between different

crystal structures (see below). All four wires show no sys-

tematic differences in terms of diameter, contact separation,

suspended respectively supported length, disorder, and dirt

particles in this magnification.

We observe individual atomic planes and identify wurt-

zite and zinc blende crystal phases and an amorphous surface

layer of 3–4 nm thickness upon increasing the magnification.

A sample plot is shown in Fig. 4(a). The different crystal

structures have a conduction band offset between 23 meV

(Ref. 20) and 86 meV (Ref. 21) and are discussed as the ori-

gin of various transport phenomena: Conductivity and trans-

port activation were shown to depend on the degree of

mixing.11,12,22 Wurtzite areas may act as tunnel barriers for

quantum dots.8,23

An influence of the crystal phase mixing on the UCFs

seems reasonable because the Nyquist dephasing that is

expected to be dominant in epitaxial semiconductor NWs is

sensitive to the density of electrons18 via the number of

states to scatter from and to. Additionally, the phase

FIG. 3. Low-magnification TEM image of the middle section of wire A. Scale bar is 100 nm. The image is stitched from 18 individual micrographs. The dashed

lines mark the extremities of contacts 2 and 3 as indicated in Fig. 1.

FIG. 4. (a) Example high-resolution TEM image of wire A along with a

schematics of the conduction band profile EC of the wurtzite (WZ) and zinc

blende (ZB) crystal phases with twinning planes (T). EF marks the Fermi

energy. (b) Distribution of the axial wurtzite segment lengths of the investi-

gated nanowires.
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coherence length depends on the diffusion constant D that in

turn reflects the disorder in the crystal. This disorder has two

main contributions, namely, the crystal phase boundaries and

point defects, e.g., from the dopants.

In previous experiments, it was not possible to correlate

the crystal structure with the transport properties of the very

same wire. Therefore, statistical fluctuations of the wire

properties, i.e., atomic structure and doping, which typically

occur in a sample, could distort the interpretation of the

transport data. Here, we present a direct mapping of the crys-

tal phases along the current flow (see right part of Fig. 4(a))

and correlate the phase mixing with the transport data of the

very same wire.

We evaluate the typical wurtzite segment length and,

therefore, the potential fluctuation periodicity in Fig. 4(b).

All distributions exhibit an average segment length of 3 nm

and a similar profile. The same holds for the zinc blende seg-

ments (not shown). Thus, the fluctuations in the crystal phase

cannot account for the distinct transport behaviours. We can

also rule out the surface layer that consists of mainly indium

oxide7 and some remnants of the PMMA resist as it does not

vary between the individual wires.

We thus have to account the transport property variations

to differences that we cannot extract from the TEM measure-

ments. One possibility is the local dopant and atomic defect

distribution that affects the diffusion constant D. Another can-

didate is the strain resulting, e.g., from the suspended geome-

try, the clamping by the contacts, and the different thermal

expansion coefficients of the InAs and the Si3N4.

In summary, we have investigated freely suspended InAs

nanowires with a sample design that offers two major advan-

tages to standard transport experiments. First, with the

suspended geometry, no substrate interaction can affect the

low-temperature transport experiments. Second, it is possible to

subsequently measure the crystal structure of the very same

nanowires by transmission electron microscopy and to thus cor-

relate transport and crystalline properties. The NWs show very

clear universal conductance fluctuations unperturbed by any

substrate influence at cryogenic temperatures. We could extract,

i.a., the phase coherence length that showed significantly differ-

ent temperature dependences from these UCFs. All nanowires

exhibit crystal phase mixing between zinc blende and wurtzite

structure in the TEM measurements. This phase mixing cannot

account for the different transport properties, since the NWs

show no systematic differences. We will further investigate the

influence of strain and dopants on the temperature dependence

of the phase coherence length in future measurements. This can

be done by studying wires with different crystal structures and

doping in transport experiments. Electron holography can be

used to investigate the distribution of the electronic potential

within a wire. The sample design presented here can be used to

correlate the results obtained with these different methods.
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