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A sample design that allows for quantum transport and transmission electron microscopy (TEM) on
individual suspended nanostructures is used to investigate moderately n-type doped InAs nanowires
(N'Ws). The nanowires were grown by metal organic vapor phase epitaxy. Universal conductance
fluctuations in the nanowires are investigated at temperatures down to 0.35 K. These fluctuations show
two different temperature dependences. The very same nanowire segments investigated in transport are
subsequently analyzed by TEM revealing crystal phase mixing. However, we find no correspondence
between the atomic structure of the wires and the temperature dependences of the conductance
fluctuations. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4742326]

Self-assembled semiconductor nanowires (NWs) receive
a considerable interest as possible candidates for future
nanoelectronic devices.'™ Here, some III/V compounds with
a low bandgap as, e.g., InAs, InN, or InSb exhibit a surface
accumulation layer that leads to Schottky-barrier free con-
tacts what in turn facilitates integration.*® Besides this
application-driven research, various fundamental quantum
effects can be studied in these material systems. Confinement
and interference effects start to dominate the electronic trans-
port at cryogenic temperatures, and single-electron tunneling
or phase coherent transport can be observed.”™

However, there are two factors inherent in the device ge-
ometry that greatly influence standard transport experiments
and result in an experimental fingerprint for each nanowire.
First, the high aspect ratio and enhanced surface conduction
lead to an increased sensitivity to the environment. This can
be used, e.g., for gas sensing'® but may also be obstructive,
since the substrate can affect the transport considerably. Sec-
ond, an usually unknown defect distribution individual for
each nanowire is used to explain many quantum interference
effects and transport phenomena.®!'!

In this Letter, we use a sample design where individual
InAs nanowires are suspended across holes in a SizNy trans-
mission electron microscopy (TEM) membrane. The NWs
are subsequently contacted and universal conductance fluctu-
ations (UCFs) are measured at cryogenic temperatures. We
find highly reproducible fluctuation patterns and clear tem-
perature dependences as we do not have any substrate influ-
ence in our suspended geometry. Two distinct temperature
dependences of the phase coherence length are observed in a
set of four wires. We correlate these transport data with the
atomic structure of the NWs obtained in a successive TEM
measurement on the very same wire section.

This approach has two advantages. In the suspended ge-
ometry, all substrate effects on the transport can be excluded.
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Although previous measurements® found a similar crystal
structure in a set of NWs, there is still a certain spread. A
wire-to-wire comparison of these data may reveal a connec-
tion that could remain unnoticed otherwise.

InAs nanowires were grown on a GaAs (111)B substrate
by selective-area metal-organic vapour phase epitaxy (SA-
MOVPE) and moderately n-doped by Si incorporation.'* A
pressure ratio of dopant versus group III precursor of
p(SisHg)/p(TMIn) = 7.5 - 10~ was chosen (doping factor
100 in Ref. 6). The resulting NWs have a diameter of
110nm and a length of about 4 um. A room-temperature re-
sistivity of p ~200uQ-m and a carrier concentration of
n~1-10%cm=> were obtained from previous measure-
ments® on NWs of similar growth conditions. We estimate
the contact resistances with these values and the results from
the multiterminal wires.

Individual as-grown NWs were mechanically removed
from the GaAs growth substrate with an In needle and selec-
tively placed across holes of a TEM membrane.'* All NWs
were chosen from within an area of about only 20 x 20 um?
edge length, so their individual growth conditions were
expected to be very similar. The TEM membrane was a perfo-
rated DuraSiN DTM-25232 with a coordinate system previ-
ously fabricated by electron beam lithography consisting of
Ti/Pt markers (5Snm/60nm). Individual Ti/Au (10nm/
120 nm) contacts to the nanowires were again lithographically
defined. The NWs were exposed to an oxygen ion beam and
to an Art plasma prior to metal evaporation to ensure a good
contact transparency. The lithography on the membranes is
described in more detail elsewhere.'> TEM images of the sam-
ples were acquired in an FEI Tecnai F20 at an acceleration
voltage of 200kV after the transport measurements.

We prepared four samples in this manner, each having a
suspended length of around 1um. A scanning electron
micrograph of one of the NWs (wire A) is depicted in Fig. 1.
The other devices are built in a three- (wire D) and
two-terminal configuration (wires B and C). The transport
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FIG. 1. Scanning electron micrograph of wire A with a schematics of the
configuration used in the transport measurements. Scale bar is 1 um. The
color scale of the secondary electron yield is inverted for clarity. A TEM
image of the marked middle section is displayed in Fig. 3.

measurements were conducted in a He-3 cryostat at tempera-
tures between 0.35 K and 30 K. The resistance was measured
using a standard lock-in technique with an ac bias of 20 nA
(wire B), 30 nA (wires C and D), and 50 nA (wire A). A con-
tact scheme for the four-terminal case is indicated in Fig. 1.
A magnetic field up to 7T was applied perpendicular to the
wire axis.

The magnetoconductance fluctuates as a function of
the magnetic field at low temperatures as can be seen in
Fig. 2(a). To quantify the fluctuation ég = G — G, we sub-
tract a slowly varying background G from the wire conduct-
ance, which is in turn determined from the measured wire
resistance after subtracting any contact resistances. An ex-
emplary pattern is depicted in the left part of Fig. 2(a). The
pattern reproduces itself with a decreasing root mean square
of the amplitude, o;,, upon increasing the temperature (right
part of Fig. 2(a)). This variation in magnetoconductance can
be attributed to UCFs.'®'” The amplitude stays constant up
to 1 K and decreases exponentially as 7-070*094 for T > 2K
for all wires (Fig. 2(b)). This can be explained with the
phase-coherence length [/, being comparable or longer than
the contact separation at 7 < 1K as discussed below. For
T > 2K, two effects divide the wire into several smaller
phase-coherent sections. First, small energy transfer
electron-electron scattering (Nyquist mechanism) dephases
the electrons.'® Second, thermal broadening leads to an
interference of several states contributing to the transport.
The latter can be quantified by the thermal length,
It = /WD /kgT, with D being the diffusion constant.

The phase-coherence length /, can be determined from
the correlation field Be. The latter is defined via the
autocorrelation  function, f(AB) = (dG(B + AB)dg(B))g,
with f(Bc) := 1f(0). Here, (...); denotes the average over
the magnetic field. A dependence

l, = y®o/(dBc) (D

is predicted for channels with d <[, as in our case.'”"?

Here, d is the channel width (the diameter, in our samples),
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FIG. 2. (a) Universal conductance fluctuation pattern dg of wire A in units
of ¢?/h as a function of magnetic field and temperature. The curve on the
left side shows the conductance fluctuations at 0.35K. (b) UCF amplitude
o5, vs T of the investigated suspended wires. The dashed lines indicate
the maximum constant amplitude when the entire wire is phase-coherent.
The solid lines represent the fitted temperature dependences above 3 K. The
dash-dotted line is the UCF amplitude calculated from the phase-coherence
length [, using Eq. (2). (¢) /, vs T determined from the correlation field Bc.
The solid lines are the fitted exponential temperature dependences. The
dashed horizontal lines indicate the contact separation length.

@ = h/e the magnetic flux quantum, and y a proportionality
constant between 0.42 and 0.95 for Iy > [, and Iy < [,
respectively.

The phase-coherence length determined from B¢ is dis-
played in the Fig. 2(c). We observe a similar behavior as
with the UCF amplitude, i.e., a saturation below 1K and an
exponential decrease above 3K for three wires. Only [, of
wire C starts decreasing at lower temperatures. We find a
quantitative agreement of max(/,) with the contact separa-
tion length L for all wires if we assume 7y = 2. This agree-
ment confirms our above assumption that the entire wire
sections between the contacts are phase-coherent for
T <1K.

The determined value for y is about two times larger
than predicted, since it is at least /7 = 0.2/, for all wires and
temperatures. The theories used in this Letter have been
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FIG. 3. Low-magnification TEM image of the middle section of wire A. Scale bar is 100 nm. The image is stitched from 18 individual micrographs. The dashed

lines mark the extremities of contacts 2 and 3 as indicated in Fig. 1.

developed for wires made from two-dimensional planar elec-
tron gases, i.a., they do not account for flux cancellation
effects owing to the cylindrical shape of our NWs and
recently reported in InAs NWs grown by molecular beam
epitaxy (MBE).’ This flux cancellation leads to an overesti-
mation of B¢, which in turn increases the value of y. A value
of y =~ 1.4 was obtained for the MBE-grown NWs, which is
close to our finding y ~ 2 for MOVPE-grown samples. The
difference can be explained by the fact that the former were
measured in the I/ > [, regime where y is expected to be
smaller.'”"?

We observe two distinct dephasing rates of [, upon
increasing the temperature. We obtain /,, ~ T~%3 for wires A
and B while /, in wires C and D decays with 7-%3. In con-
trast, the decrease of the UCF amplitude is predicted to
depend mainly on /r in the regime of Iy < [, < L as it is
the case for T > 3 K. It is!”19

el l

with f = /8=n/3. Again our data fits nicely to the theoretical
prediction as shown in Fig. 2(b). However, we have to mod-
ify f similar to y by a factor between 0.5 (wire A) and 2
(wire B) to obtain a quantitative agreement. The reason for
the distinct prefactors is likely a slight deviation of the real
contact resistances to the estimated values. A geometrical
effect as in the discussion of /, above may lead to an addi-
tional constant deviation of f5.

We can estimate the error on the various fitting parame-
ters like y and the decay exponents to be around 10% from a
repetitive measurement after one thermal cycle to room
temperature.

The origin of the different temperature dependences is
unclear at this point. We can neglect all detrimental substrate
effects due to the suspended geometry of our samples. Thus,
this origin can only lie within the structure of the wires them-
selves. The devices show no difference on the length scales
accessible in scanning electron microscopy. Therefore, we
take advantage of our sample design and use TEM to investi-
gate if the atomic structure of the wires has an influence on
the UCFs and on the different dephasing rates of /,,. These
measurements were performed as a last step to avoid any
influence of the transport properties by the defects possibly
induced from the electron beam irradiation. A low-
magnification image stitched from 18 individual micrographs
of the suspended part of wire A is shown in Fig. 3. The edges
of the inner contacts can be seen at the image borders. The
vertical fringes are due to stacking faults between different

crystal structures (see below). All four wires show no sys-
tematic differences in terms of diameter, contact separation,
suspended respectively supported length, disorder, and dirt
particles in this magnification.

We observe individual atomic planes and identify wurt-
zite and zinc blende crystal phases and an amorphous surface
layer of 3—4 nm thickness upon increasing the magnification.
A sample plot is shown in Fig. 4(a). The different crystal
structures have a conduction band offset between 23 meV
(Ref. 20) and 86 meV (Ref. 21) and are discussed as the ori-
gin of various transport phenomena: Conductivity and trans-
port activation were shown to depend on the degree of
mixing.'""'*** Wurtzite areas may act as tunnel barriers for
quantum dots.®*?

An influence of the crystal phase mixing on the UCFs
seems reasonable because the Nyquist dephasing that is
expected to be dominant in epitaxial semiconductor NWs is
sensitive to the density of electrons'® via the number of
states to scatter from and to. Additionally, the phase
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FIG. 4. (a) Example high-resolution TEM image of wire A along with a
schematics of the conduction band profile E¢ of the wurtzite (WZ) and zinc
blende (ZB) crystal phases with twinning planes (T). Er marks the Fermi
energy. (b) Distribution of the axial wurtzite segment lengths of the investi-
gated nanowires.
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coherence length depends on the diffusion constant D that in
turn reflects the disorder in the crystal. This disorder has two
main contributions, namely, the crystal phase boundaries and
point defects, e.g., from the dopants.

In previous experiments, it was not possible to correlate
the crystal structure with the transport properties of the very
same wire. Therefore, statistical fluctuations of the wire
properties, i.e., atomic structure and doping, which typically
occur in a sample, could distort the interpretation of the
transport data. Here, we present a direct mapping of the crys-
tal phases along the current flow (see right part of Fig. 4(a))
and correlate the phase mixing with the transport data of the
very same wire.

We evaluate the typical wurtzite segment length and,
therefore, the potential fluctuation periodicity in Fig. 4(b).
All distributions exhibit an average segment length of 3 nm
and a similar profile. The same holds for the zinc blende seg-
ments (not shown). Thus, the fluctuations in the crystal phase
cannot account for the distinct transport behaviours. We can
also rule out the surface layer that consists of mainly indium
oxide’ and some remnants of the PMMA resist as it does not
vary between the individual wires.

We thus have to account the transport property variations
to differences that we cannot extract from the TEM measure-
ments. One possibility is the local dopant and atomic defect
distribution that affects the diffusion constant D. Another can-
didate is the strain resulting, e.g., from the suspended geome-
try, the clamping by the contacts, and the different thermal
expansion coefficients of the InAs and the Si3Njy.

In summary, we have investigated freely suspended InAs
nanowires with a sample design that offers two major advan-
tages to standard transport experiments. First, with the
suspended geometry, no substrate interaction can affect the
low-temperature transport experiments. Second, it is possible to
subsequently measure the crystal structure of the very same
nanowires by transmission electron microscopy and to thus cor-
relate transport and crystalline properties. The NWs show very
clear universal conductance fluctuations unperturbed by any
substrate influence at cryogenic temperatures. We could extract,
1.a., the phase coherence length that showed significantly differ-
ent temperature dependences from these UCFs. All nanowires
exhibit crystal phase mixing between zinc blende and wurtzite
structure in the TEM measurements. This phase mixing cannot
account for the different transport properties, since the NWs
show no systematic differences. We will further investigate the
influence of strain and dopants on the temperature dependence

Appl. Phys. Lett. 101, 062104 (2012)

of the phase coherence length in future measurements. This can
be done by studying wires with different crystal structures and
doping in transport experiments. Electron holography can be
used to investigate the distribution of the electronic potential
within a wire. The sample design presented here can be used to
correlate the results obtained with these different methods.
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ment support, Beata Kardynal for fruitful discussions, and
Falk Dorn for recording the TEM images. We also acknowl-
edge financial support from the DFG Forschergruppe 912 and
from the RWTH Aachen via an ERS seed fund.

'L. Samuelson, C. Thelander, M. Bérk, M. Borgstrom, K. Deppert, K.
Dick, A. Hansen, T. Martensson, N. Panev, A. Persson, W. Seifert, N.
Skold, M. Larsson, and L. Wallenberg, Physica E 25, 313 (2004).

2y. Li, F. Qian, J. Xiang, and C. M. Lieber, Mater. Today 9, 18 (2006).

3p. Yang, R. Yan, and M. Fardy, Nano Lett. 10, 1529 (2010).

“D. C. Tsui, Phys. Rev. Lett. 24, 303 (1970).

SM. Noguchi, K. Hirakawa, and T. Ikoma, Phys. Rev. Lett. 66, 2243
(1991).

6S. Wirths, K. Weis, A. Winden, K. Sladek, C. Volk, S. Alagha, T. E. Weir-
ich, M. von der Ahe, H. Hardtdegen, H. Liith, N. Demarina, D.
Griitzmacher, and T. Schapers, J. Appl. Phys. 110, 053709 (2011).

1. Shorubalko, A. Pfund, R. Leturcq, M. T. Borgstrom, F. Gramm, E.
Miiller, E. Gini, and K. Ensslin, Nanotechnology 18, 044014 (2007).

8M. D. Schroer and J. R. Petta, Nano Lett. 10, 1618 (2010).

°C. Blomers, M. 1. Lepsa, M. Luysberg, D. Griitzmacher, H. Liith, and T.
Schapers, Nano Lett. 11, 3550 (2011).

19), Du, D. Liang, H. Tang, and X. P. Gao, Nano Lett. 9, 4348 (2009).

1y, Wallentin, M. Ek, L. R. Wallenberg, L. Samuelson, and M. T.
Borgstrom, Nano Lett. 12, 151 (2012).

2¢c, Thelander, P. Caroff, S. Plissard, A. W. Dey, and K. A. Dick, Nano
Lett. 11, 2424 (2011).

3. Sladek, A. Penz, K. Weis, S. Wirths, C. Volk, S. Alagha, M. Akabori,
S. Lenk, M. Luysberg, H. Liith, H. Hardtdegen, T. Schapers, and D.
Griitzmacher, MRS Proc. 1258, 2 (2010).

K. Flohr, M. Liebmann, K. Sladek, H. Y. Giinel, R. Frielinghaus, F. Haas,
C. Meyer, H. Hardtdegen, T. Schapers, D. Griitzmacher, and M. Morgen-
stern, Rev. Sci. Instrum. 82, 113705 (2011).

SR, Frielinghaus, K. GoB, S. Trellenkamp, L. Houben, C. M. Schneider,
and C. Meyer, Phys. status Solidi B 248, 2660 (2011).

'B. Al’tshuler, Pis'ma Zh. Eksp. Teo. Fiz. 41, 530 (1985) [JETP Lett. 41,
648 (1985)].

'7P. A. Lee, A. D. Stone, and H. Fukuyama, Phys. Rev. B 35, 1039 (1987).

8. L. Al’tshuler, A. G. Aronov, and D. E. Khmelnitsky, J. Phys. C 15,
7367 (1982).

1°C. W. J. Beenakker and H. van Houten, Phys. Rev. B 37, 6544 (1988).

2°A. De and C. E. Pryor, Phys. Rev. B 81, 155210 (2010).

2IM. Murayama and T. Nakayama, Phys. Rev. B 49, 4710 (1994).

225, A. Dayeh, D. Susac, K. L. Kavanagh, E. T. Yu, and D. Wang, Adv.
Funct. Mater. 19, 2102 (2009).

2K, A. Dick, C. Thelander, L. Samuelson, and P. Caroff, Nano Lett. 10,
3494 (2010).

Downloaded 15 May 2013 to 134.94.122.141. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://apl.aip.org/about/rights_and_permissions


http://dx.doi.org/10.1016/j.physe.2004.06.030
http://dx.doi.org/10.1016/S1369-7021(06)71650-9
http://dx.doi.org/10.1021/nl100665r
http://dx.doi.org/10.1103/PhysRevLett.24.303
http://dx.doi.org/10.1103/PhysRevLett.66.2243
http://dx.doi.org/10.1063/1.3631026
http://dx.doi.org/10.1088/0957-4484/18/4/044014
http://dx.doi.org/10.1021/nl904053j
http://dx.doi.org/10.1021/nl201102a
http://dx.doi.org/10.1021/nl902611f
http://dx.doi.org/10.1021/nl203213d
http://dx.doi.org/10.1021/nl2008339
http://dx.doi.org/10.1021/nl2008339
http://dx.doi.org/10.1557/PROC-1258-P02-05
http://dx.doi.org/10.1063/1.3657135
http://dx.doi.org/10.1002/pssb.201100081
http://dx.doi.org/10.1103/PhysRevB.35.1039
http://dx.doi.org/10.1088/0022-3719/15/36/018
http://dx.doi.org/10.1103/PhysRevB.37.6544
http://dx.doi.org/10.1103/PhysRevB.81.155210
http://dx.doi.org/10.1103/PhysRevB.49.4710
http://dx.doi.org/10.1002/adfm.200801307
http://dx.doi.org/10.1002/adfm.200801307
http://dx.doi.org/10.1021/nl101632a

