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Abstract

Electrical oscillations in neuronal network activity are ubiquitous in the brain and have been associated with cognition and
behavior. Intriguingly, the amplitude of ongoing oscillations, such as measured in EEG recordings, fluctuates irregularly, with
episodes of high amplitude alternating with episodes of low amplitude. Despite the widespread occurrence of amplitude
fluctuations in many frequency bands and brain regions, the mechanisms by which they are generated are poorly
understood. Here, we show that irregular transitions between sub-second episodes of high- and low-amplitude oscillations
in the alpha/beta frequency band occur in a generic neuronal network model consisting of interconnected inhibitory and
excitatory cells that are externally driven by sustained cholinergic input and trains of action potentials that activate
excitatory synapses. In the model, we identify the action potential drive onto inhibitory cells, which represents input from
other brain areas and is shown to desynchronize network activity, to be crucial for the emergence of amplitude fluctuations.
We show that the duration distributions of high-amplitude episodes in the model match those observed in rat prefrontal
cortex for oscillations induced by the cholinergic agonist carbachol. Furthermore, the mean duration of high-amplitude
episodes varies in a bell-shaped manner with carbachol concentration, just as in mouse hippocampus. Our results suggest
that amplitude fluctuations are a general property of oscillatory neuronal networks that can arise through background input
from areas external to the network.
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Introduction

Oscillations in electrical activity are a characteristic feature of

many brain networks, including the hippocampus [1,2], prefrontal

cortex [3], visual cortex [4,5] and auditory cortex [6], and arise as

a result of interacting excitatory and inhibitory populations of cells

[7,8,9]. Network oscillations occur at many frequencies, ranging

from fast gamma (40–80 Hz) to ultra-slow delta (0.1–1 Hz)

[10,11]. Oscillations are linked with cognitive and behavioral

functions, including attention [12,13,14], learning [10,15], work-

ing memory [16,17,18] and memory consolidation [19], and show

abnormalities in neurological disorders such as autism, schizo-

phrenia and attention-deficit hyperactivity disorder (ADHD)

[16,20,21,22,23,24].

Intriguingly, in EEG and MEG recordings the amplitude of

ongoing oscillations fluctuates irregularly, with high-amplitude

episodes (HAEs) alternating with low-amplitude episodes (LAEs).

These amplitude fluctuations, which are generated locally and are

different from the well understood thalamocortical spindles

[25,26,27], have been observed in the intact brain [28,29,30] as

well as in cortical slices [3,31,32] and occur in many frequency

bands, including theta (4–6 Hz) [33], alpha (8–13 Hz) [34], beta

(14–30 Hz) [32], and gamma (25–80 Hz) [35] bands. Amplitude

fluctuations are present in ongoing brain activity during rest [36],

while sustained increases in oscillation amplitude are associated

with the performance of memory-related tasks [37,38]. Alterations

in the temporal structure of amplitude fluctuations have been

observed in Alzheimer’s disease [39] and ADHD [21].

Despite the widespread occurrence of amplitude fluctuations,

and some theoretical efforts to understand them [40,41,42], the

mechanisms by which they are generated are poorly known. To

get insight into potential mechanisms, we investigated whether

such fluctuations may also occur in a computational model of a

generic neuronal network consisting of interconnected inhibitory

and excitatory cells. We found that the model generated

oscillations in the alpha/beta-frequency band, with distributions

of HAE durations similar to those observed in experimental data

of carbachol-induced oscillations in prefrontal cortex (PFC) slices

[3,32]. Moreover, the relationship between HAE duration and

cholinergic drive in the model was similar to that in mouse

hippocampus in vitro [42].

Our results suggest that fluctuations in oscillation amplitude can

arise as a result of a temporarily decrease in firing synchrony

caused by the interference between the ongoing network-

generated oscillatory activity and input to the inhibitory popula-

tion originating from areas external to the network.
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Methods

Experimental data on amplitude fluctuations in PFC and
hippocampus

In our earlier work [32,40,41,42], we observed amplitude

fluctuations in oscillations in EEG and MEG recordings from

human subjects, in in vivo recordings of local field potentials in the

prefrontal cortex (PFC) of freely moving rats, as well as in in vitro

recordings of local field potentials (Fig. 1) in acute slices of the rat

PFC. The durations of high-amplitude episodes (HAEs) were

quantified for multiple recordings of 200 seconds in 25 recordings

from medial prefrontal cortex (mPFC) slices [32]. Data on the

effect of increasing concentrations of carbachol on HAEs in mouse

hippocampus in vitro was taken from [42] (Fig. 2 therein).

Model cells
Following [7] and [43], we built a model neuronal network in

NEURON [44], consisting of 80 excitatory cells and 20 inhibitory

cells (Fig. S1), reflecting the ratio of excitatory to inhibitory cell

numbers found in most cortical areas [45]. Cells were defined as

one-compartment, conductance-based models, with a length and

diameter of 20 mm, and contained the Hodgkin-Huxley Na+ and

K+ channels, responsible for action potential generation, as well as

leakage channels. The change in membrane potential V (in mV)

was given by

C
dV

dt
~ICDC{gKn4(V{EK){gNam3h(V{ENa)

{gL(V{EL){gGABA(V{EGABA)

{gAMPA(V{EAMPA){gAP(V{EAP)

ð1Þ

with time t in ms; C~10{6 F/cm2 the membrane capacitance;

gK~800 pS/mm2 and EK~{100 mV the conductance and

reversal potential of the K+ channels; gNa~1000 pS/mm2 and

ENa~50 mV the conductance and reversal potential of the Na+

channels; and gL~1 pS/mm2 and EL~{67 mV the conduc-

tance and reversal potential of the leakage channels. Each cell

received synaptic input from other cells in the network, with

gAMPA and EAMPA the synaptic conductance and reversal

potential of the AMPA channels; and gGABA and EGABA the

Figure 1. Amplitude fluctuations in carbachol-induced oscilla-
tions recorded in the infralimbic region of the PFC. (a)
Extracellular field potential (top) at one of the 64 electrodes of a
multi-electrode array, and wavelet transform (bottom). Episodes of high
power are observed to alternate with episodes of low power. Color
indicates power of oscillations. (b) Close up of the activity in (a).
doi:10.1371/journal.pcbi.1002666.g001

Figure 2. Quantification of high-amplitude episodes (HAEs)
and low-amplitude episodes (LAEs) in network oscillations. (a)
Raster diagram showing the firing times (indicated by dots) of the
excitatory cells. (b) Corresponding firing-rate histogram. The maximal
firing rate (red bar) per oscillation period T is successively determined
by using a sliding time window of length T. The time axis is discretized
into bins of 6 ms. (c) A spline polynomial is interpolated through the
maximal firing rates (red bars) per oscillation period. Time intervals
during which the curve exceeds the HAE threshold (dashed line) are
considered HAEs, otherwise LAEs. (See further Methods.)
doi:10.1371/journal.pcbi.1002666.g002

Author Summary

Rhythmic changes in electrical activity are observed
throughout the brain, and arise as a result of reciprocal
interactions between excitatory and inhibitory neurons.
Synchronized activity of a large number of neurons gives
rise to macroscopic oscillations in electrical activity, which
can be measured in EEG recordings and are thought to
have a key role in learning and memory. Interestingly, the
amplitude of ongoing oscillations fluctuates irregularly,
with high-amplitude episodes alternating with low-ampli-
tude episodes. Although these amplitude fluctuations
occur in many brain regions, the mechanisms by which
they are generated are still poorly known. To get insight
into potential mechanisms, we investigated whether such
fluctuations occur in a computational model of a neuronal
network. We show that the model generates amplitude
fluctuations that are similar to those observed in exper-
imental data and that external input from other brain areas
to the inhibitory cells of the network is essential for their
generation. This input can disrupt the synchrony of
activity, causing transitions between episodes of high
synchrony (high oscillation amplitudes) and episodes of
low synchrony (low oscillation amplitudes). Episodes of
high synchrony are relevant for brain function because
they provide favorable conditions for learning.

External Drive Induces Amplitude Fluctuations
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synaptic conductance and reversal potential of the GABAA

channels (for parameter values, see Model network). In addition,

each cell received two kinds of external input: a constant

depolarizing current ICDC and a train of external action potentials

impinging onto an excitatory synapse, with synaptic conductance

gAP and reversal potential EAP (for parameter values, see External

drive). All parameter values were as in [46].

The dynamics of the gating variables n, m and h (in general

denoted by z) of the ion channels were given by

dz

dt
~az(V )(1{z){bz(V )z ð2Þ

with az(V ) and bz(V ) the voltage-dependent opening and closing

rate constants. For the n, m and h variables, these functions were [46]:

an(V )~0:032(Vz52)=(1{exp({0:2(Vz52)))

bn(V )~0:5exp({0:025(57zV ))

am(V )~0:32(54zV )=(1{exp({0:25(Vz54)))

bm(V )~0:28(27zV )=(exp(0:2(Vz27)){1)

ah(V )~0:128(exp({0:056(Vz50)))

bh(V )~4=(1zexp({0:2(Vz27)))

ð3Þ

Model network
The connectivity structure of the network was created by giving

each cell a probability to connect to any other cell. Excitatory (E)

cells connected to inhibitory (I) and E cells with probabilities

PEI~0:65 and PEE~0:3, respectively; while I cells connected to E

and I cells with probabilities PIE~0:6 and PII~0:55, respectively.

A connection consisted of a single synapse with a synaptic

conductance as described below. The connectivity structure was

chosen on the basis of the following considerations. First, the use of

connection probabilities prevents unrealistic all-to-all connectivity

[47]. Second, the connection probabilities should be high enough

to create a globally connected network rather than a number of

isolated subnetworks. Third, and most importantly, the oscillations

should be generated by a so-called PING (Pyramidal Interneuron

Network Gamma) mechanism [48]. In this mechanism, which

underlies the generation of most oscillations in the brain, the E

cells (pyramidal cells) activate the I cells (interneurons), which in

turn suppress the E cells. The PING mechanism depends on

strong connectivity from E to I cells, strong connectivity from I to

E cells, and, to promote synchronous firing, connectivity from I to

I cells [48].

For both excitatory and inhibitory synapses, the time course of

the synaptic conductance was given by a mono-exponential

function. The synaptic delay for both type of synapses is 1 ms [49].

Synaptic excitation was mediated by AMPA synapses with a

conductance gEE,EI~1 pS/mm2, reversal potential

EAMPA = 0 mV and decay time constant tE~2 ms [7,8,50].

Synaptic inhibition was mediated by GABAA synapses with

conductances gII~10 pS/mm2 and gIE~5 pS/mm2, reversal

potential EGABA = 280 mV, and decay time constant

tI~10 ms, unless stated otherwise. These parameters were as in

[46,51]. The decay time constant of the inhibitory conductance

(i.e., the IPSC decay constant; tI~10 ms) tuned the network

oscillations into the alpha/beta frequency band, with oscillations

of about 18 Hz, in the middle of the range of frequencies reported

for PFC slices [3,32,52].

External drive
As in [7], each cell received two kinds of external input (see eqn.

1): a constant depolarizing current ICDC, representing cholinergic

input necessary to induce oscillations [9,53], and a train of

external action potentials (AP), representing background input

from other brain areas [54].

Cholinergic input has been shown to cause a sustained

depolarizing response [55], which, as we do here, can be

mimicked by applying a non-specific, depolarizing current to the

cells [9]. The amplitude of ICDC varied among cells and was

randomly drawn from a uniform distribution in the intervals

½3:7-6:2� pA for the inhibitory population and ½10-11:3� pA for the

excitatory population; these currents alone were not strong enough

to trigger action potentials.

The train of external action potentials (AP) is characterized by

its randomness and mean firing frequency. The randomness (rand)

is denoted as a fixed number in the interval [0, 1], with 0

indicating no randomness and 1 indicating full randomness of the

Poisson-distributed spike train. The mean firing frequency is equal

to 1/isi, where isi is the mean interspike interval. The firing time of

the first external spike was set at t~ton; the firing times of all

subsequent spikes were computed by

tnz1~tnz(1{rand)|isizrand|isi|errand() ð4Þ

where errand() is a random number drawn from a negative

exponential distribution with a mean of 1. Unless stated otherwise,

the first spike was generated at ton~80 ms. All cells received

external spike trains independently from each other. External

action potentials activated an excitatory synapse with conductance

gAP = 2.6 pS/mm2, reversal potential EAP = 0 mV and decay time

constant tAP~2 ms.

Analyzing network activity
Network activity was analyzed separately for the excitatory and

the inhibitory population. To describe the time-domain of network

activity in the model, we constructed firing-rate histograms by

counting spikes in time bins of 6 ms. This bin size relates to a

sample frequency of about 167 Hz, about 5 times higher than the

fastest frequency (30 Hz) in our simulations. Because this bin size

practically eliminated the occurrence of more than one spike per

time bin per cell, the number of spikes was equal to the number of

active cells per time bin.

To analyze the time-frequency domain of network activity in

the model, we performed a wavelet analysis using the Torrence

algorithm [56], implemented in MatLab and with the 6 ms-binned

firing rate histogram as input. A standard Morlet function was

used with a frequency range 0.01–70 Hz and 0.1 Hz scaling

windows. A wavelet analysis reveals how the power (amplitude) of

oscillations varies over time.

To quantify the amplitude modulation of the oscillations in

more detail, we identified the maximal firing rates in all successive

periods of the oscillation (Fig. 2). To this end, first a rough estimate

of the oscillation period T was obtained by determining the

average time duration between the time bins for which the firing

rates exceeded the mean firing rate. Next, a sliding time window

with length T was used to search for the time bins with the highest

firing rate per period. The procedure started by finding the first

time bin t(1) with the highest amplitude, which marked the peak

firing rate in the first period of the oscillation. The sliding time

window was centered around t(1), thus covering the range

[t(1)2T/2, t(1)+T/2]. Next, the window was shifted to [t(1)+T/2,

t(1)+T/2+T] to find time bin t(2) with the maximal firing rate in

External Drive Induces Amplitude Fluctuations
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the second period of the oscillation. Subsequently, the time

window was shifted to [t(2)+T/2, t(2)+T/2+T] to find time bin t(3),

and so on. Thus, iteratively, time bin t(i+1) with maximal firing

rate is searched for within the time window [t(i)+T/2, t(i)+T/2+T].

Because of the alignment (and T/2 shift) of the sliding window

with the previously found peak bin, the procedure is insensitive to

small momentary variations in the periodicity of the oscillation.

Then, a smooth curve through the maximal firing rates was

obtained by interpolating a third-order spline polynomial. This

interpolated curve was used to quantify high-amplitude episodes

(HAEs) and low-amplitude episodes (LAEs). When for a given time

interval the interpolated curve exceeded a given threshold, the

interval was considered a HAE, otherwise a LAE. This HAE

threshold was set at 0:25|ncells, where ncells is the total number of

cells in the excitatory or the inhibitory population. In other words,

a HAE was defined as an episode in which at least 25% of a

neuronal subpopulation fired synchronously with a precision of

6 ms (the size of the time bins).

To compare our model outcomes with experimental data on

amplitude fluctuations in PFC and hippocampus, we took the

population firing-rate histograms as being representative of local

field potential. Although determining the precise relation between

neuronal firing and field potential is still a topic of ongoing

research and would require extensive knowledge about the cellular

and extracellular conductive environment [57], both modeling

studies [58] and experimental findings [59] appear to support a

direct relationship between local field potential and population

firing rate.

Results

To get insight into potential mechanisms underlying the

amplitude fluctuations observed in ongoing oscillations in electrical

activity [29,30], we investigated whether such fluctuations may

also occur in a computational model of a generic neuronal

network consisting of interconnected inhibitory and excitatory

cells that are externally driven by sustained cholinergic input and

excitatory synaptic input.

Fluctuations in oscillation amplitude
The neuronal network model was found to generate strong

fluctuations in oscillation amplitude, with high-amplitude episodes

(HAEs) alternating with low-amplitude episodes (LAEs). Fig. 3

shows an arbitrary 10 seconds interval of network activity in both

the excitatory population (Fig. 3a–c) and the inhibitory population

(Fig. 3d–f). In this example, the inhibitory cells received external

input in the form of a constant depolarizing current (CDC) and a

train of action potentials (AP) that activate an excitatory synapse.

The excitatory cells received external input only in the form of

CDC input. The CDC input represents cholinergic input, and the

AP input reflects background synaptic input from areas external to

the network. As can be seen in Fig. 3, both the excitatory and the

inhibitory population exhibited HAEs and LAEs, and in most

cases the transitions between HAEs and LAEs occurred around

the same time in both populations.

To explore further what stimulus conditions induced fluctua-

tions in oscillation amplitude, we simulated networks with all

possible combinations of external spike (AP) and current (CDC)

input to the excitatory and inhibitory populations (Fig. 4). The

interacting excitatory and inhibitory cell populations were found

to produce strong oscillations (at around 18 Hz) only in the

presence of CDC input to the excitatory population, in line with

experimental data showing the dependence of oscillations on

depolarizing cholinergic drive to pyramidal cells [2,32] Setting a

threshold for defining a high oscillation amplitude (HAE

threshold; see Methods), we found that depending on the input

conditions, oscillation amplitudes remained supra-threshold

(Figs. 4a, c, d, g; Fig. S2), sub-threshold (Figs. 4b, e, i), or adopted

values both above and below threshold (Figs. 4f, h). Thus,

pronounced alternations between high- and low-amplitude

episodes occurred only with CDC+AP input to the inhibitory

cells and CDC input (with or without AP input) to the excitatory

cells (Figs. 4f, h). HAE-LAE alternations were also not observed in

the scenario of Fig. 4d if, to compensate for the lack of CDC input

to the inhibitory cells, the AP frequency or the strength of the

excitatory synapses activated by the APs was scaled up. In that

situation, the AP input became so strong that the inhibitory cells

responded mainly to the random AP input rather than to the input

from within the network, resulting in asynchronous activity and

consequently the absence of network oscillations. Likewise, no

HAE-LAE alternations occurred in the scenario of Fig. 4g if, to

compensate for the lack of AP input to the inhibitory cells, the

CDC input was increased, indicating that the discontinuous action

potential input rather than the continuous current input drives the

transitions from HAEs to LAEs (see further below). Thus, the

minimal stimulation condition for producing HAE-LAE alternations is

CDC input applied to both populations and AP input applied to

the inhibitory population. Unless mentioned otherwise, the

minimal stimulation protocol was used for all other simulations.

AP randomness and frequency influence durations of
HAEs and LAEs

The network activity in Fig. 3 was generated using a completely

random AP input (rand = 1) with a mean firing frequency of

11.11 Hz (isi = 90 ms). To study how the characteristics of the AP

input affected fluctuations in oscillation amplitude, we systemat-

ically varied AP randomness and AP frequency. Alternating

periods of high- and low-amplitude oscillations were found to

occur for a wide range of AP randomness (0–1) and AP frequency

(4–35 Hz) (Fig. S3).

To investigate the effect of AP randomness, we fixed AP

frequency (isi = 90 ms) and varied AP randomness between

completely regular (rand = 0) and fully random (rand = 1). Examples

of network activity for two different values of AP randomness (0.7

and 0) are shown in Fig. 5. As can be seen, even with a completely

regular AP train (rand = 0), HAE-LAE alternations occurred

(Fig. 5d–f); so, importantly, AP randomness is not essential. When

AP randomness was increased, the mean LAE duration increased

and the mean HAE duration decreased, both in the excitatory

population (Fig. 6a, b) and in the inhibitory population (Fig. 6c, d).

(The trend is broken for rand = 0.) Fig. S4 shows the distributions of

HAE and LAE durations for different values of AP randomness.

In the default scenario for a completely regular AP train

(rand = 0), all inhibitory cells received the external spikes at the

same time, with the onset of spiking in all AP trains at 80 ms and

AP frequency 11.11 Hz (the frequency of the ongoing oscillation is

around 18 Hz). We also studied a second scenario in which the

onset of spiking was fully randomized between 0 and 80 ms,

producing AP trains that were out-of-phase among each other.

Both scenarios produced HAE-LAE alternations (Fig. S5).

To study the impact of AP firing frequency, we fixed AP

randomness at 1 and varied the AP frequency between 7.69 and

20 Hz. Examples of network activity for two different values of AP

firing frequency (7.69 and 20 Hz) are shown in Fig. 7. The mean

HAE duration decreased and the mean LAE duration increased

with increasing AP frequency, both in the excitatory population

(Fig. 8a, b) and in the inhibitory population (Fig. 8c, d). Fig. S6

External Drive Induces Amplitude Fluctuations
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Figure 3. Amplitude fluctuations in oscillations generated in the neuronal network model, with high-amplitude episodes (HAEs)
alternating with low-amplitude episodes (LAEs). The dynamics of alternating HAEs and LAEs occurred in both the excitatory and the inhibitory
population. Representative activity is shown separately for the excitatory and the inhibitory population as raster diagrams of cell firing (a, d), firing-
rate histograms with interpolated spline polynomials (b, e; red lines on top of histograms), and wavelet transforms of the firing-rate histograms (c, f).
The episodes in which the interpolated polynomials (b, e) exceeded the dashed horizontal line (the HAE threshold) are considered HAEs, otherwise
LAEs. The excitatory and the inhibitory population exhibited similar dynamics with respect to HAE-LAE alternations. The panels on the right are
zoomed-in intervals indicated by the red horizontal lines below the x-axes. The external input to the inhibitory cells consisted of a constant
depolarizing current (CDC) and a train of action potentials (AP) activating an excitatory synapse. The excitatory cells received external input only in
the form of CDC input.
doi:10.1371/journal.pcbi.1002666.g003
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shows the distributions of HAE and LAE durations for different

values of AP frequency.

HAE-LAE alternations are caused by the interference of
AP input with the ongoing oscillation

To elucidate the mechanism underlying HAE-LAE alternations,

we first studied in more detail intervals of activity where transitions

between HAE and LAE took place (Fig. 9). During a high-

amplitude episode, cells fired in strong synchrony, resulting in high

amplitudes of the firing rate histograms (high power in the wavelet

map). During a low-amplitude episode, the cells fired less

synchronously, as revealed by the spread of activity over more

time bins. Less synchronous firing also implies that cells received

synaptic input from other cells in the network less synchronously.

Because simultaneous excitatory input from two or more firing

cells was needed to generate an action potential, also the total

number of cells firing during a LAE was often lower than during a

HAE.

Since HAE-LAE alternations also occurred with completely

regular AP input (rand = 0) to the inhibitory cells, we further

explored how AP input reduced synchronous firing by considering

three specific cases with no randomness in the AP input (Fig. 10).

The cases differed with respect to AP frequency and the time at

which the APs were applied relative to the firing of the I cells.

In the first case (Fig. 10a, top), AP frequency was the same as

the frequency of the ongoing oscillation, and APs were applied

when the membrane potential of the I cells was just below

(between 0 and 0.7 mV) the firing threshold. As a result, the I cells

started firing slightly earlier, but network activity did not lose

synchrony.

In the second case (Fig. 10a, middle), APs were applied at the

same frequency as before but at times when the membrane

potential was further below (between 1 and 1.5 mV) the firing

threshold. The I cells advanced their firing times, but to a different

extent, so that synchrony was lost.

Fig. 10c shows that the advancement in firing time depended on

the cell’s membrane potential at the time of AP arrival. When an

AP arrived when the cell’s membrane potential was close to the

firing threshold or far below it, the AP had a relatively small effect

on the timing of the subsequent spike.

In the third case (Fig. 10a, bottom), AP frequency was different

from the frequency of the ongoing oscillation. During the course of

the simulation, the APs arrived at different points in the oscillation

cycle of the I cells and thus at different membrane potentials,

resulting in varying levels of advancement in firing time and of

synchrony.

In conclusion, HAE-LAE alternations are generated by the

interference of the AP input with the ongoing network oscillations.

The AP input to the I cells disrupts the synchrony of firing among

the I cells (and consequently also among the E cells). As a result of

the increased temporal spread of activity, the oscillation ampli-

tude, defined as the number of firing cells during a 6 ms time

interval, decreases and a LAE commences. After a variable period

of time, the interactions between the excitatory and inhibitory cells

are able to drive the network back to synchrony, leading to a HAE.

Because the desynchronization effect of the AP input continually

competes with the tendency of the excitatory and inhibitory

connections to drive the network to synchrony [48], LAEs

alternate with HAEs.

The stronger the disruption caused by the AP input, the more

likely it is that network activity becomes desynchronized and that

there is a switch from a HAE to a LAE. Consequently, the higher

the AP frequency, the shorter the mean HAE duration will be

(Fig. 8). Without any disruption, i.e., in the absence of AP input to

the inhibitory population, the network will remain in a HAE for

the duration of the entire simulation (Fig. S2). The disruptive effect

of the AP input is also larger for higher randomness of the AP

train, as different cells may receive AP input at different times and

thus at different levels of their membrane potential, leading to

different advances in their firing times and a higher likelihood that

synchrony is lost. Consequently, the higher the AP randomness,

the shorter the mean HAE duration will be (Fig. 6).

The model reproduces HAE distributions observed in PFC
We compared the distributions of HAE durations from our

simulations with those observed in the prelimbic (PrL) and

infralimbic (IL) regions of the PFC in rat slices [32,52] (Fig. 11a,

b). In both prelimbic and infralimbic areas, fast and slow

oscillations occurred, referred to as PrL/fast (16.661.0 Hz),

PrL/slow (11.260.5 Hz), IL/fast (14.760.7 Hz) and IL/slow

(10.660.5 Hz), which all exhibited HAE-LAE alternation. To

match the oscillation frequencies in the model with those in the

PFC, we adjusted the decay time of the GABA-ergic synapses

(Table S1). This resulted in HAE distributions that were already

very similar to the experimental distributions with respect to their

shapes. To further optimize the fit between model and experi-

mental distributions, especially with respect to their means, we also

adjusted CDC and AP frequency. To compare the experimental

and model distributions of HAE durations, we used a two-sided

Kolmogorov-Smirnov test (Fig. 11b). In all four cases, there were

no significant differences between the experimental distributions

and the model-generated distributions.

To get more insight into what the shapes of the experimental

and model HAE distributions tell us about the transitions between

Figure 4. Alternations between episodes of high- and low-
amplitude oscillations occurred only when both the inhibitory
(I) and the excitatory (E) cells received an external constant
depolarizing current (CDC) and at least the inhibitory cells
received a train of external action potentials (AP) activating an
excitatory synapse. Each panel shows the distribution of oscillation
amplitudes (in terms of number of spikes per time bin) in the excitatory
population for the nine different combinations of external input to the
network. Thus, alternations between high-amplitude episodes (HAEs)
and low-amplitude episodes (LAEs) occurred only when the distribution
contained oscillation amplitudes at both sides of the HAE threshold (the
dotted vertical red line; scenarios f and h). The distributions were
normalized by dividing the number of time bins by the maximal
number of time bins in the distribution.
doi:10.1371/journal.pcbi.1002666.g004

External Drive Induces Amplitude Fluctuations

PLOS Computational Biology | www.ploscompbiol.org 6 August 2012 | Volume 8 | Issue 8 | e1002666



synchronous and desynchronous activity, we analyzed the

experimental data assuming a Markov process for the succession

of high- and low-amplitude cycles. A single cycle of the ongoing

oscillation is either in an upstate, when it has synchronized activity

and consequently a high amplitude (and thus is part of a HAE), or

in a downstate, when it has desynchronized activity and

consequently a low amplitude (and thus is part of a LAE). Let

puu and pud~1{puu denote the transition probabilities from an

upstate to an upstate and from an upstate to a downstate,

respectively. Similarly, let pdd and pdu~1{pdd denote the

transition probabilities from a downstate to a downstate and from

a downstate to an upstate, respectively. The probability of a HAE

consisting of n cycles in an upstate, preceded and followed by a

cycle in a downstate, is then proportional to pdupn{1
uu pud, which is

an exponentially decreasing function of n. However, the distribu-

tions in Fig. 11a show that HAE duration probability has a clear

modus, with much lower probabilities for short HAEs, i.e., HAEs

with a short sequence of upstates. Apparently, the transition

probability of a cycle depends on its position in a HAE. To be able

to match the shape of the experimental HAE distributions, we

found that it was sufficient to assume that the probability puu 1 that

the first upstate in a HAE is followed by an upstate is higher than

the probability puu nxt that an upstate in the rest of the HAE is

followed by an upstate. Fig. 11c shows that the distributions

generated by a Markov process with such transition probabilities

accurately describe the experimental HAE distributions. Because

Figure 5. Alternating episodes of high- and low-amplitude oscillations for two different values of AP randomness. Raster diagrams of
cell firing (a, d), firing-rate histograms with interpolated spline polynomials (b, e) and wavelet transform of the firing-rate histograms (c, f) for the
excitatory population for AP randomness 0.7 (a–c) and 0 (d–f) in the minimal stimulation protocol. For rand = 0, APs were simultaneously delivered to
all I cells at regular intervals of 90 ms.
doi:10.1371/journal.pcbi.1002666.g005
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of the strong similarity between model and experimental data,

such probabilities are thus also required to account for the model

data. In conclusion, the succession of high-amplitude cycles (i.e.,

synchronized activity) and low-amplitude cycles (i.e., desynchro-

nized activity) is a random process governed by a slightly modified

Markov process. The Markov analysis revealed that a cycle with

synchronized activity that directly follows upon a cycle with

desynchronized activity is apparently less vulnerable to become

desynchronized again in the next cycle.

The model reproduces the effect of carbachol on HAE
duration in the hippocampus

The CDC input to the model network represents cholinergic

input and in cortical slice experiments is often provided by

applying the cholinergic agonist carbachol [9,60]. To study the

impact of CDC input on HAE duration, we varied the strength of

CDC by multiplying the standard value (of both the excitatory and

the inhibitory population; see Methods) by a factor ranging from

0.3 to 3. To ensure that the results were not critically dependent

on the choice of the HAE threshold, we analyzed the network

activity using six different values of the HAE threshold. The results

(Fig. 12a) show that HAE duration increased with increasing CDC

input and, interestingly, decreased when CDC input was further

increased. This bell-shaped relationship between CDC input and

mean HAE duration held for all values of the HAE threshold.

With low CDC (CDC factor ,1.2), which raised the cells’

membrane potential marginally above resting level, there was no

clear oscillatory activity. The overall activity in the network was

low, and cells fired non-synchronously, as a result of the

randomness of the AP drive. With higher CDC (1.2,CDC

factor,3), clear oscillatory activity was seen with HAE-LAE

alternations. In this range of CDC values, which markedly raised

the cells’ membrane potential above resting level, HAE duration

first increased with increasing CDC. However, when CDC was

further increased, the CDC tended to bring the membrane

potential above firing threshold, so that the firing directly induced

by the synaptic interactions between the cells in the network

became less important, resulting in less synchronous activity and

decreased HAE durations.

Our model results are in agreement with results from

experiments in which oscillations in mouse hippocampal brain

slices were induced by applying different concentrations of

carbachol [42]. These oscillations had a frequency of about

18 Hz and fluctuated in amplitude. As in the model, a bell-shape

relationship was found between carbachol concentration and

mean HAE duration (Fig. 12b). HAE duration increased with

increasing carbachol concentration (1–15 mM) and decreased

when carbachol concentration was further increased (15–

25 mM). In [42] the authors tested for a difference in median

HAE duration with one-tailed paired permutation tests between

5 mM and 15 mM, and 15 mM and 20 mM. Indeed, HAE duration

was significantly higher at 15 mM compared with 5 mM and

20 mM (Friedman test, p,0.05, n.17, binomial corrected). The

tendency for oscillations to have long-lasting HAEs at intermediate

levels of carbachol was present for all HAE thresholds.

Discussion

Irregular fluctuations in the amplitudes of ongoing oscillations

have been observed in many frequency bands and brain regions,

but the mechanisms by which they are generated are unknown.

We showed here that a generic model network consisting of

interconnected excitatory and inhibitory cells, which were driven

by action potentials (activating excitatory synapses) and current

input (cholinergic stimulation) from areas external to the network,

generated oscillatory activity in the alpha/beta frequency band in

which high-amplitude episodes (HAEs) alternated irregularly with

low-amplitude episodes (LAEs). The minimal condition for these

HAE-LAE alternations to arise was external action potential input

(representing, e.g., corticocortical or thalamocortical input) onto

the inhibitory cells combined with current input to both the

excitatory and the inhibitory cells.

The external action potential (AP) input interferes with the

ongoing network oscillations generated by the reciprocal interac-

tions between excitatory and inhibitory cells. The APs advance the

firing time of the inhibitory cells to an extent that depends on the

cell’s membrane potential at the time of AP arrival. As a

consequence, cells experience a variable degree of advance in

their firing times, leading to a reduction in firing synchrony. Since

oscillation amplitude is proportional to the number of simulta-

neously firing cells, reduced synchrony gives rise to a decrease in

oscillation amplitude and the start of a LAE. The desynchroni-

zation effect of the AP input competes with the tendency of the

interacting excitatory and inhibitory cells to drive the network

back to synchrony, so that LAEs alternate with HAEs. Note that

Figure 6. The more random the AP train, the shorter the mean HAE duration and the longer the mean LAE duration. Mean HAE and
LAE durations (+SEM) in the excitatory population (a, b) and the inhibitory population (c, d) for different values of AP randomness. Red lines,
exponential fits.
doi:10.1371/journal.pcbi.1002666.g006
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randomness in the AP train is not per se required for the APs to be

able to desynchronize network activity (see Fig. 5d–f).

The occurrence of alternating episodes of high- and low-

amplitude oscillations was robust to changes in model properties,

including the total number of cells in the network, the ratio of

excitatory to inhibitory cell numbers, the connectivity structure of

the network as determined by the connection probabilities

between excitatory and inhibitory cells, the decay time constants

of the synaptic conductances, the duration of the synaptic delay,

and cellular properties such as the channel conductances

underlying the generation of action potentials. In particular,

increasing the total number of cells in the network ten-fold, while

maintaining the values of all other parameters and the proportion

of excitatory and inhibitory cells, did not affect the results.

Changing the ratio of excitatory to inhibitory cell numbers from

80%–20% to 70%–30% or 90%–10% affected the durations of

LAEs and HAEs, but not the presence of fluctuations in oscillation

amplitude as such. The qualitative results were also largely

insensitive to different choices of connection probabilities, as long

as they supported the generation of oscillations. The IPSC decay

constant affected the frequency of the oscillations, with lower

frequencies as the IPSC decay constant increased, but did not

qualitatively influence the occurrence of LAEs and HAEs, as

shown in Fig. 11, where the IPSC decay time constant was varied

Figure 7. Alternating episodes of high- and low-amplitude oscillations for two different values of AP frequency. Raster diagrams of
cell firing (a, d), firing-rate histograms with interpolated spline polynomials (b, e), and wavelet transforms of the firing-rate histograms (c, f) for the
excitatory population for AP frequency is 20 Hz (a–c) and 7.69 Hz (d–f) in the minimal stimulation protocol. For an AP frequency of 20 Hz, the HAEs
were much shorter and had a lower amplitude than for 7.69 Hz. The dashed horizontal line is the HAE threshold.
doi:10.1371/journal.pcbi.1002666.g007
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between 11–16 ms. The synaptic delay in our standard network

was 1 ms; only for much larger delays (15–20 ms), with all the

other parameter values unchanged, did the network fail to show

HAE-LAE alternations. Altering the conductances of the Na+, K+

and leakage channels by about 30% had impact only on the shape

of the action potentials but not on the network oscillations and the

amplitude fluctuations. In conclusion, our results are not

dependent on a particular choice of parameter values and may

therefore be valid for a wide range of brain networks.

It is important to note that the oscillations in our model are not

generated by a stochastic resonance mechanism. The ongoing

network oscillations are generated by the interacting excitatory

and inhibitory cells, whereas the noisy external drive tends to

perturb the oscillations. With stochastic resonance, in contrast, it is

the noisy drive that induces oscillations, when the system resonates

at a particular noise level [61].

External action potential input applied onto excitatory cells was

not capable of reducing synchronous firing and thus inducing low-

amplitude episodes. Even if the strength of the synapse upon which

the external action potential input impinges was increased up to 3–

4 times, the external action potentials were not able to

desynchronize the oscillations. The inhibitory cells, rather than

the excitatory cells, are responsible for synchronizing cell firing

and for setting the rhythm of the network [48]. The oscillations are

Figure 8. The higher the AP frequency, the shorter the mean HAE duration and the longer the mean LAE duration. Mean HAE and LAE
durations (+SEM) in the excitatory population (a, b) and the inhibitory population (c, d) for different values of AP frequency. Red lines, exponential
fits.
doi:10.1371/journal.pcbi.1002666.g008

Figure 9. During a LAE, for both the excitatory and the inhibitory population, cell firing is less synchronous. This is revealed by the
spread of activity over more time bins and the diminished overlap in membrane potential traces. In addition, fewer cells are firing during a LAE.
Shown are the raster diagram of cell firing (a, d), the firing rate histogram with the spline polynomial (b, e), and the cell membrane potentials (c, f) of
and interval of activity from Fig. 3. Horizontal dashed line, HAE threshold.
doi:10.1371/journal.pcbi.1002666.g009
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basically generated through periodic silencing of the network by

the inhibitory cells, with the IPSC decay time determining the

frequency of the oscillations.

The distributions of high-amplitude episode (HAE) durations in

the model matched those observed experimentally in different

PFC areas. To obtain the same oscillation frequencies in the model

as in the experimental recordings, we adjusted IPSC decay time, as

IPSC kinetics have been shown to modulate oscillation frequency

[2,32]. To further optimize the fit between model and experi-

mental HAE distributions, we also adjusted the constant depolar-

izing current (CDC) input and the frequency of the train of

external action potentials (AP). Different values of CDC and AP

frequency are to be expected as different PFC areas may receive

different external input.

With increasing randomness or frequency of the external spike

train, the mean HAE duration became shorter and the mean LAE

duration longer. This prediction of the model can be tested

experimentally in cortical slices cultured on multi-electrode arrays

(MEAs). Since MEAs allow not only the recording of field

potentials but also the delivery of electrical signals, with full control

over the randomness and frequency of the stimulation, it can be

tested whether HAE duration is influenced by these stimulation

parameters in the same manner as observed in the model.

The mean HAE duration increased with increasing CDC input

(representing cholinergic stimulation), but decreased when the

current input was further increased. This bell-shaped dependence

was also observed in hippocampal slice cultures in which the

duration of HAEs was measured for different concentrations of

carbachol applied [42].

Although the spatial scales of the neuronal networks considered

here are different from those of the networks measured with EEG,

also EEG measurements reveal similar fluctuations in oscillation

amplitude [40], with periods of high amplitude alternating with

periods of low amplitude. Interestingly, the mean duration of

episodes of high-amplitude oscillations is similar across many

systems and in agreement with our model outcomes: acute slices of

rat prefrontal cortex (PrL fast: 192 ms; IL slow: 476 ms; see

Results) [32], alpha/beta oscillations in acute hippocampal slices

(450 ms) [42], theta/alpha oscillations in human EEG (546 ms)

[41], and alpha oscillations in human EEG (518–555 ms) [28].

Also, the mean HAE duration expressed in number of oscillation

cycles is in all systems mostly in the range of 3–7 cycles. The

duration of single HAEs varies strongly, both in the model and in

the cortex (Fig. 11a), and can be accurately described by a slightly

modified Markov process (Fig. 11c). If slow hyperpolarizing

channels, such as slow calcium-activated potassium channels, were

responsible for alternating HAEs and LAEs, one would expect that

the durations of HAEs and LAEs would be much less variable,

being determined by the kinetics of the channels.

In model studies, Börgers et al. [7,8] found that hyperpolarizing

adaptation currents can change the state of the network from

asynchrony to weak gamma rhythmicity. They also described a

parameter regime in which the network toggles between a state of

gamma rhythmicity and a state in which the E-cells are suppressed

by asynchronous activity of the I-cells. This dynamics is somewhat

reminiscent of the dynamics that we have found here, except that

in our case most E-cells during a LAE keep firing but with reduced

synchrony. Another model study [62] showed that in networks

consisting of only inhibitory neurons, synaptic noise or heteroge-

neity in the applied current can reduce the degree of synchrony;

however, no alternating episodes of high synchrony (i.e., HAEs)

and low synchrony (i.e., LAEs) were reported. In model

simulations, Tiesinga et. al. [9,63] studied carbachol-induced

transitions between oscillations of different frequencies. These

studies were, however, not concerned with amplitude variability or

transitions between high- and low-amplitude episodes. In [64],

synchrony and stability, but no HAE-LAE alternations, were

investigated in general pulse-coupled oscillators. Unlike these

oscillators, the cells in our network are excitatory or inhibitory, are

not connected all-to-all, and do not fire when uncoupled but

Figure 10. APs can disrupt synchrony among I cells, causing a LAE. (a) Red, external spikes (AP). Blue, inhibitory spikes. (top) AP frequency
was the same as the frequency of the ongoing oscillation (17.63 Hz). If the first AP was delivered (at tonset = 330 ms) when the membrane potential of
the I cells was close to the firing threshold (between 0 and 0.7 mV), I cell firing was slightly advanced, but cells kept firing in synchrony. (middle panel)
If the first APs was delivered when the membrane potential of the I cells was further below firing threshold (between 1 and 1.5 mV), I cell firing was
reset and temporarily lost synchrony. (bottom) If AP frequency was lower than the frequency of the ongoing oscillation, the likelihood of APs
resetting I cell firing increased, generating HAE-to-LAE transitions. (b) The firing pattern of a representative I cell for the different cases in (a). (c) The
APs advanced the firing of the I cells compared with the expected firing dictated by the ongoing oscillation. The advancement depended on the cell’s
membrane potential at the time of AP arrival. The vertical line indicates the firing threshold.
doi:10.1371/journal.pcbi.1002666.g010
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require synaptic input from the other cells in the network to

become activated. In a corticothalamic model, Freyer et al. [28]

found that noisy synaptic inputs into thalamic neurons elicit bursts

between low- and high-amplitude oscillations if the system is near

a particular type of dynamic instability. The model describes the

mean field dynamics of populations of excitatory and inhibitory

neurons in the cortex as they interact with neurons in the

thalamus. Thus no individual neurons are considered, so that in

their model, in contrast to our model, firing synchrony between

cells and the impact of noisy input on synchrony and oscillation

amplitude cannot be investigated. Their model also needs a rather

complex synaptic noise term, containing both an activity-

Figure 11. The distributions of HAE duration in the model match those observed for carbachol-induced oscillations in rat
prefrontal cortex. (a) The model distributions (red lines) in the excitatory population and the empirical distributions (histograms) observed in the
prelimbic (PrL) and infralimbic (IL) regions of the prefrontal cortex [52]. In each region of the PFC, both fast and slow oscillations occurred, which both
exhibited HAE-LAE alternations. The oscillation frequency in the model was adjusted by changing the IPSC decay time t. The distributions were
normalized by dividing the number of HAEs within a given bin by the total number of HAEs in the distribution. (b) The cumulative distributions of the
model data (red lines) and the empirical data (black lines). The model distributions are not significantly different (Kolmogorov-Smirnov test) from the
empirical distributions. (c) The distributions generated by a Markov process (green line) accurately describe the empirical distributions (histograms).
Parameter puu 1 is the probability that the first oscillation cycle with high amplitude (upstate) in a HAE is followed by an upstate; puu nxt is the
probability that an upstate in the rest of the HAE is followed by an upstate. See further main text.
doi:10.1371/journal.pcbi.1002666.g011

Figure 12. In the model, as in mouse hippocampus, the mean duration of high-amplitude episodes varies in a bell-shaped manner
with CDC input or carbachol concentration. (a) For different values of the HAE threshold, the mean duration of the HAEs in the model for the
excitatory population as a function of CDC input. The CDC input represents cholinergic input. (b) The bell-shaped relationship between cholinergic
input and mean HAE duration was confirmed experimentally by using the cholinergic agonist carbachol (CCh) applied to mouse hippocampal slices.
A HAE was defined as an episode in which the amplitude envelope of the bandpass-filtered oscillations was above 0.5*the mean oscillation
amplitude [42]. For a given HAE threshold, the mean HAE durations were normalized by dividing by the mean HAE duration obtained for the lowest
CCh concentration different from zero. Fig. b modified from [42].
doi:10.1371/journal.pcbi.1002666.g012
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dependent, multiplicative component and a purely additive

component. Moreover, since alternating episodes of high- and

low-amplitude oscillations also occur in isolated cortical slices [3],

the mechanism by which they are generated cannot depend on

thalamic input.

Our study suggests that amplitude fluctuations may be a general

property of oscillatory neuronal networks that can arise through

background input from areas external to the network. Episodes of

high-amplitude oscillations reflect periods of synchronized firing.

Since synchronized firing between cells is important for correla-

tion-based Hebbian learning, HAEs provide favorable conditions

for synaptic strength modification. As we have shown here,

external input to a network can modulate the duration of HAEs

and thus may influence periods of learning and memory

formation. Also, the external input changes the relative times of

the postsynaptic spikes in the network and could thereby affect the

degree and even sign of spike-timing synaptic plasticity (STDP).

Indeed, in the hippocampus it has been found that afferent input

can, depending on the timing of the stimulation, either advance or

delay the postsynaptic spike and thus determine whether synaptic

potentiation or depression takes place [65].

Supporting Information

Figure S1 Schematic diagram of the network. The cells of

the inhibitory (I) population projected among each other and to

the cells of the excitatory (E) population. The cells of the excitatory

population projected among each other and to the cells of the

inhibitory population. Both excitatory and inhibitory cells also

received external input in the form of a constant depolarizing

current (CDC) and a train of action potentials (AP) that activate an

excitatory synapse.

(TIF)

Figure S2 HAE-LAE transitions did not occur without
AP input to the inhibitory cells. In this example, both the

excitatory and the inhibitory population received CDC input, but

only the excitatory population received AP input (see also Fig. 4g).

For the excitatory cells, the figure shows the raster diagram of cell

firing (a), the firing-rate histogram with the spline polynomial (b),

and the wavelet transform of the firing-rate histogram (c). Panels

(d) and (e) depict a zoomed-in period of (a) and (b), respectively, as

indicated by the red lines below the x-axes. The apparent

amplitude variation is a consequence of the binning procedure (see

Methods), and does not reflect a genuine alteration in activity

level. The discrete binning may cause a single event of maximal

network-wide firing to become divided over two consecutive bins.

This will then show up as a lower amplitude of the oscillation.

However, the quantification of HAE-LAE alternation was not

affected, because the apparent drop in amplitude never fell below

the HAE threshold.

(TIF)

Figure S3 The effect of AP randomness (rand) and AP
frequency (mfr) on the distribution of oscillation
amplitudes in the excitatory population for the minimal
stimulation protocol. The red dashed line is the HAE

threshold. Low AP frequencies (0.1–4 Hz) could hardly affect

the ongoing oscillation (which had a frequency of about 18 Hz), so

that most amplitudes remained supra-threshold. High AP

frequencies (35–125 Hz) disturbed the ongoing oscillation so

much that firing synchrony was lost, resulting in low, sub-threshold

amplitudes. For intermediate AP frequencies (between 4 and

35 Hz), the amplitude distribution contained both supra- and sub-

threshold parts. The supra-threshold fraction of the distribution

tended to increase with lower AP randomness.

(TIF)

Figure S4 Distributions of HAEs and LAEs in the
excitatory population for different values of AP random-
ness in the minimal stimulation protocol. The p-values

indicate the similarity of each distribution to the reference

distribution with rand = 1 (Kolmogorov-Smirnov test). Except for

rand = 0.9, there were significant differences with the reference

distributions. For rand = 0.1 (*), there is a time bin outside the

potted range, at 12.86 s, with two episodes.

(TIF)

Figure S5 Influence of mode of AP delivery on HAE
duration distributions. For the excitatory population, the

three columns show, from left to right, the firing times of the

external spikes onto the inhibitory cells, the interspike interval (isi)

distribution of the external spikes, and the distribution of HAE

durations. For the HAE durations, the mean+std and p-values

(Kolmogorov-Smirnov test, testing the distribution against that

obtained with rand = 1) are given. In the first four rows, all

inhibitory cells received simultaneously (in phase) their first

external spike at 80 ms after the onset of the simulation. Because

of the randomness in assigning the subsequent spikes, the firing

times of the external spikes quickly ran out of phase, except for

rand = 0. In the bottom row (out of phase), for rand = 0, the first

external spike was uniformly randomized between 0–80 ms. For

all modes of AP delivery, including rand = 0, HAEs and LAEs

occurred (see also Fig. 5d–f).

(TIF)

Figure S6 Distributions of HAEs and LAEs in the
excitatory population for different values of AP frequen-
cy (mfr) in the minimal stimulation protocol. The p-values

indicate the similarity of each distribution to the reference

distribution with AP frequency 11.11 Hz (Kolmogorov-Smirnov

test). Only the distributions for AP frequencies 20 and 7.69 Hz

differed significantly from the ones of the reference situation.

(TIF)

Table S1 Oscillation frequency and mean and median
HAE duration observed in the model (excitatory popu-
lation) and in the prelimbic (PrL) and infralimbic (IL)
regions of the prefrontal cortex (PFC). Also listed are the

values of CDC factor, IPSC decay time and AP frequency used in

the model to fit the oscillation frequency and HAE duration

distributions in the PFC. In each region of the PFC, both fast and

slow oscillations occurred.

(DOC)
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