000022779 001__ 22779
000022779 005__ 20210129210831.0
000022779 0247_ $$2pmid$$apmid:22872742
000022779 0247_ $$2DOI$$a10.2967/jnumed.112.103325
000022779 0247_ $$2WOS$$aWOS:000308685100019
000022779 0247_ $$2altmetric$$aaltmetric:880979
000022779 037__ $$aPreJuSER-22779
000022779 041__ $$aeng
000022779 082__ $$a610
000022779 084__ $$2WoS$$aRadiology, Nuclear Medicine & Medical Imaging
000022779 1001_ $$0P:(DE-Juel1)VDB73298$$aGalldiks, N.$$b0$$uFZJ
000022779 245__ $$aRole of O-(2-18 F-Fluoroethyl)-L-Tyrosine PET for differentiation of local recurrent brain metastasis from radiation necrosis
000022779 260__ $$aNew York, NY$$bSociety of Nuclear Medicine$$c2012
000022779 264_1 $$2Crossref$$3online$$bSociety of Nuclear Medicine$$c2012-08-07
000022779 264_1 $$2Crossref$$3print$$bSociety of Nuclear Medicine$$c2012-09-01
000022779 264_1 $$2Crossref$$3print$$bSociety of Nuclear Medicine$$c2012-09-01
000022779 300__ $$a1367 - 1374
000022779 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000022779 3367_ $$2DataCite$$aOutput Types/Journal article
000022779 3367_ $$00$$2EndNote$$aJournal Article
000022779 3367_ $$2BibTeX$$aARTICLE
000022779 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000022779 3367_ $$2DRIVER$$aarticle
000022779 440_0 $$03621$$aJournal of Nuclear Medicine$$v53$$x0097-9058$$y8
000022779 500__ $$aRecord converted from VDB: 12.11.2012
000022779 520__ $$aThe aim of this study was to investigate the potential of O-(2-(18)F-fluoroethyl)-L-tyrosine ((18)F-FET) PET for differentiating local recurrent brain metastasis from radiation necrosis after radiation therapy because the use of contrast-enhanced MRI for this issue is often difficult.Thirty-one patients (mean age ± SD, 53 ± 11 y) with single or multiple contrast-enhancing brain lesions (n = 40) on MRI after radiation therapy of brain metastases were investigated with dynamic (18)F-FET PET. Maximum and mean tumor-to-brain ratios (TBR(max) and TBR(mean), respectively; 20-40 min after injection) of (18)F-FET uptake were determined. Time-activity curves were generated, and the time to peak (TTP) was calculated. Furthermore, time-activity curves of each lesion were assigned to one of the following curve patterns: (I) constantly increasing (18)F-FET uptake, (II) (18)F-FET uptake peaking early (TTP ≤ 20 min) followed by a plateau, and (III) (18)F-FET uptake peaking early (TTP ≤ 20 min) followed by a constant descent. The diagnostic accuracy of the TBR(max) and TBR(mean) of (18)F-FET uptake and the curve patterns for the correct identification of recurrent brain metastasis were evaluated by receiver-operating-characteristic analyses or Fisher exact test for 2 × 2 contingency tables using subsequent histologic analysis (11 lesions in 11 patients) or clinical course and MRI findings (29 lesions in 20 patients) as reference.Both TBR(max) and TBR(mean) were significantly higher in patients with recurrent metastasis (n = 19) than in patients with radiation necrosis (n = 21) (TBR(max), 3.2 ± 0.9 vs. 2.3 ± 0.5, P < 0.001; TBR(mean), 2.1 ± 0.4 vs. 1.8 ± 0.2, P < 0.001). The diagnostic accuracy of (18)F-FET PET for the correct identification of recurrent brain metastases reached 78% using TBR(max) (area under the ROC curve [AUC], 0.822 ± 0.07; sensitivity, 79%; specificity, 76%; cutoff, 2.55; P = 0.001), 83% using TBR(mean) (AUC, 0.851 ± 0.07; sensitivity, 74%; specificity, 90%; cutoff, 1.95; P < 0.001), and 92% for curve patterns II and III versus curve pattern I (sensitivity, 84%; specificity, 100%; P < 0.0001). The highest accuracy (93%) to diagnose local recurrent metastasis was obtained when both a TBR(mean) greater than 1.9 and curve pattern II or III were present (AUC, 0.959 ± 0.03; sensitivity, 95%; specificity, 91%; P < 0.001).Our findings suggest that the combined evaluation of the TBR(mean) of (18)F-FET uptake and the pattern of the time-activity curve can differentiate local brain metastasis recurrence from radionecrosis with high accuracy. (18)F-FET PET may thus contribute significantly to the management of patients with brain metastases.
000022779 536__ $$0G:(DE-Juel1)FUEK409$$2G:(DE-HGF)$$aFunktion und Dysfunktion des Nervensystems (FUEK409)$$cFUEK409$$x0
000022779 536__ $$0G:(DE-HGF)POF2-89572$$a89572 - (Dys-)function and Plasticity (POF2-89572)$$cPOF2-89572$$fPOF II T$$x1
000022779 588__ $$aDataset connected to Web of Science, Pubmed
000022779 650_2 $$2MeSH$$aAdolescent
000022779 650_2 $$2MeSH$$aAdult
000022779 650_2 $$2MeSH$$aAged
000022779 650_2 $$2MeSH$$aBiological Transport
000022779 650_2 $$2MeSH$$aBrain Neoplasms: metabolism
000022779 650_2 $$2MeSH$$aBrain Neoplasms: radionuclide imaging
000022779 650_2 $$2MeSH$$aBrain Neoplasms: secondary
000022779 650_2 $$2MeSH$$aDiagnosis, Differential
000022779 650_2 $$2MeSH$$aHumans
000022779 650_2 $$2MeSH$$aMale
000022779 650_2 $$2MeSH$$aMiddle Aged
000022779 650_2 $$2MeSH$$aNecrosis: metabolism
000022779 650_2 $$2MeSH$$aNecrosis: radionuclide imaging
000022779 650_2 $$2MeSH$$aNeoplasm Recurrence, Local: metabolism
000022779 650_2 $$2MeSH$$aNeoplasm Recurrence, Local: radionuclide imaging
000022779 650_2 $$2MeSH$$aPositron-Emission Tomography
000022779 650_2 $$2MeSH$$aROC Curve
000022779 650_2 $$2MeSH$$aRadiation Injuries: metabolism
000022779 650_2 $$2MeSH$$aRadiation Injuries: radionuclide imaging
000022779 650_2 $$2MeSH$$aTyrosine: analogs & derivatives
000022779 650_2 $$2MeSH$$aTyrosine: diagnostic use
000022779 650_2 $$2MeSH$$aTyrosine: metabolism
000022779 650_2 $$2MeSH$$aYoung Adult
000022779 650_7 $$00$$2NLM Chemicals$$aO-(2-fluoroethyl)tyrosine
000022779 650_7 $$055520-40-6$$2NLM Chemicals$$aTyrosine
000022779 650_7 $$2WoSType$$aJ
000022779 65320 $$2Author$$aradiation necrosis
000022779 65320 $$2Author$$astereotactic radiosurgery
000022779 65320 $$2Author$$arecurrent brain metastasis
000022779 65320 $$2Author$$aamino acid PET
000022779 65320 $$2Author$$aF-18-fluoroethyl-L-tyrosine (F-18-FET)
000022779 7001_ $$0P:(DE-Juel1)131627$$aStoffels, G.$$b1$$uFZJ
000022779 7001_ $$0P:(DE-Juel1)VDB101468$$aFilss, C.P.$$b2$$uFZJ
000022779 7001_ $$0P:(DE-HGF)0$$aPiroth, M.D.$$b3
000022779 7001_ $$0P:(DE-HGF)0$$aSabel, M.$$b4
000022779 7001_ $$0P:(DE-HGF)0$$aRuge, M.I.$$b5
000022779 7001_ $$0P:(DE-Juel1)VDB612$$aHerzog, H.$$b6$$uFZJ
000022779 7001_ $$0P:(DE-Juel1)131794$$aShah, N.J.$$b7$$uFZJ
000022779 7001_ $$0P:(DE-Juel1)131720$$aFink, G.R.$$b8$$uFZJ
000022779 7001_ $$0P:(DE-Juel1)131816$$aCoenen, H.H.$$b9$$uFZJ
000022779 7001_ $$0P:(DE-Juel1)131777$$aLangen, K.J.$$b10$$uFZJ
000022779 77318 $$2Crossref$$3journal-article$$a10.2967/jnumed.112.103325$$b : Society of Nuclear Medicine, 2012-08-07$$n9$$p1367-1374$$tJournal of Nuclear Medicine$$v53$$x0161-5505$$y2012
000022779 773__ $$0PERI:(DE-600)2040222-3$$a10.2967/jnumed.112.103325$$gVol. 53, p. 1367 - 1374$$n9$$p1367-1374$$q53<1367 - 1374$$tJournal of nuclear medicine$$v53$$x0161-5505$$y2012
000022779 8567_ $$uhttp://dx.doi.org/10.2967/jnumed.112.103325
000022779 909CO $$ooai:juser.fz-juelich.de:22779$$pVDB
000022779 9132_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000022779 9131_ $$0G:(DE-HGF)POF2-89572$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$v(Dys-)function and Plasticity$$x1
000022779 9141_ $$y2012
000022779 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000022779 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000022779 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000022779 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000022779 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000022779 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000022779 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000022779 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000022779 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000022779 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000022779 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000022779 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000022779 9201_ $$0I:(DE-Juel1)INM-3-20090406$$gINM$$kINM-3$$lKognitive Neurowissenschaften$$x0
000022779 9201_ $$0I:(DE-Juel1)INM-4-20090406$$gINM$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x1
000022779 9201_ $$0I:(DE-Juel1)INM-5-20090406$$gINM$$kINM-5$$lNuklearchemie$$x2
000022779 970__ $$aVDB:(DE-Juel1)139539
000022779 980__ $$aVDB
000022779 980__ $$aConvertedRecord
000022779 980__ $$ajournal
000022779 980__ $$aI:(DE-Juel1)INM-3-20090406
000022779 980__ $$aI:(DE-Juel1)INM-4-20090406
000022779 980__ $$aI:(DE-Juel1)INM-5-20090406
000022779 980__ $$aUNRESTRICTED
000022779 981__ $$aI:(DE-Juel1)INM-4-20090406
000022779 981__ $$aI:(DE-Juel1)INM-5-20090406