001     22816
005     20240619091019.0
024 7 _ |2 DOI
|a 10.1002/adfm.201101925
024 7 _ |2 WOS
|a WOS:000301481000005
037 _ _ |a PreJuSER-22816
041 _ _ |a eng
082 _ _ |a 620
084 _ _ |2 WoS
|a Chemistry, Multidisciplinary
084 _ _ |2 WoS
|a Chemistry, Physical
084 _ _ |2 WoS
|a Nanoscience & Nanotechnology
084 _ _ |2 WoS
|a Materials Science, Multidisciplinary
084 _ _ |2 WoS
|a Physics, Applied
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |0 P:(DE-Juel1)VDB88037
|a Sanetra, N.
|b 0
|u FZJ
245 _ _ |a Printing of Highly Integrated Crossbar Junctions
260 _ _ |a Weinheim
|b Wiley-VCH
|c 2012
300 _ _ |a 1129 - 1135
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 16181
|a Advanced Functional Materials
|v 22
|x 1616-301X
|y 6
500 _ _ |3 POF3_Assignment on 2016-02-29
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a A new process is presented that combines nanoimprint lithography and soft lithography to assemble metalbridgemetal crossbar junctions at ambient conditions. High density top and bottom metal electrodes with half-pitches down to 50 nm are fabricated in a parallel process by means of ultraviolet nanoimprint lithography. The top electrodes are realized on top of a sacrificial layer and are embedded in a polymer matrix. The lifting of the top electrodes by dissolving the sacrificial layer in an aqueous solution results in printable electrode stamps. Crossbar arrays are noninvasively assembled with high yield by printing the top electrode stamps onto bare or modified bottom electrodes. A semiconducting and a quasi metal like conducting type of polymer are incorporated in the cross points to form metal-polymer-metal junctions. The electrical characterization of the printed junctions revealed that the functional integrity of the electrically addressed conductive polymers is conserved during the assembling process. These findings suggest that printing of electrodes represents an easy and cost effective route to highly integrated nanoscale metal-bridge-metal junctions if imprint lithography is used for electrode fabrication.
536 _ _ |0 G:(DE-Juel1)FUEK412
|2 G:(DE-HGF)
|a Grundlagen für zukünftige Informationstechnologien
|c P42
|x 0
536 _ _ |0 G:(DE-Juel1)FUEK505
|a BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|c P45
|x 1
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
653 2 0 |2 Author
|a nanoimprint
653 2 0 |2 Author
|a conductive polymer
653 2 0 |2 Author
|a flexible electronics
653 2 0 |2 Author
|a metal-organic frameworks
653 2 0 |2 Author
|a microcontact printing
653 2 0 |2 Author
|a metal-molecule-metal
700 1 _ |0 P:(DE-HGF)0
|a Karipidou, Z.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Wirtz, R.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Knorr, N.
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Rosselli, S.
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Nelles, G.
|b 5
700 1 _ |0 P:(DE-Juel1)128713
|a Offenhäusser, A.
|b 6
|u FZJ
700 1 _ |0 P:(DE-Juel1)128707
|a Mayer, D.
|b 7
|u FZJ
773 _ _ |0 PERI:(DE-600)2039420-2
|a 10.1002/adfm.201101925
|g Vol. 22, p. 1129 - 1135
|p 1129 - 1135
|q 22<1129 - 1135
|t Advanced functional materials
|v 22
|x 1616-301X
|y 2012
856 7 _ |u http://dx.doi.org/10.1002/adfm.201101925
909 C O |o oai:juser.fz-juelich.de:22816
|p VDB
913 1 _ |0 G:(DE-Juel1)FUEK412
|1 G:(DE-HGF)POF2-420
|2 G:(DE-HGF)POF2-400
|b Schlüsseltechnologien
|k P42
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|v Grundlagen für zukünftige Informationstechnologien
|x 0
913 1 _ |0 G:(DE-Juel1)FUEK505
|1 G:(DE-HGF)POF2-450
|2 G:(DE-HGF)POF2-400
|b Schlüsseltechnologien
|k P45
|l Biologische Informationsverarbeitung
|v BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|x 1
913 2 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-559H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 0
913 2 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-529H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 1
914 1 _ |y 2012
915 _ _ |0 StatID:(DE-HGF)0010
|2 StatID
|a JCR/ISI refereed
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
920 1 _ |0 I:(DE-Juel1)ICS-8-20110106
|k ICS-8
|l Bioelektronik
|g ICS
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-8-20110106
|k PGI-8
|l Bioelektronik
|g PGI
|x 2
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 1
970 _ _ |a VDB:(DE-Juel1)139580
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ICS-8-20110106
980 _ _ |a I:(DE-Juel1)PGI-8-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-3-20200312
981 _ _ |a I:(DE-Juel1)PGI-8-20110106
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21