000022824 001__ 22824
000022824 005__ 20210129210832.0
000022824 0247_ $$2pmid$$apmid:22227856
000022824 0247_ $$2DOI$$a10.1007/s00221-011-2990-7
000022824 0247_ $$2WOS$$aWOS:000300580900009
000022824 037__ $$aPreJuSER-22824
000022824 041__ $$aeng
000022824 082__ $$a610
000022824 084__ $$2WoS$$aNeurosciences
000022824 1001_ $$0P:(DE-HGF)0$$aChristel, M.I.$$b0
000022824 245__ $$aFunctional synchronization in repetitive bimanual prehension movements
000022824 260__ $$aBerlin$$bSpringer$$c2012
000022824 300__ $$a261 - 271
000022824 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000022824 3367_ $$2DataCite$$aOutput Types/Journal article
000022824 3367_ $$00$$2EndNote$$aJournal Article
000022824 3367_ $$2BibTeX$$aARTICLE
000022824 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000022824 3367_ $$2DRIVER$$aarticle
000022824 440_0 $$02022$$aExperimental Brain Research$$v217$$x0014-4819
000022824 500__ $$aThe authors wish to thank the subjects for their participation and Yves Paulignan for expert technical assistance. We thank the anonymous reviewers for their valuable comments on the previous versions of the manuscript. This project was supported by the Deutsche Forschungsgemeinschaft (DFG Ch 149/4-1) and by a grant of the Freie Universitat of Berlin (KFN) to MIC).
000022824 520__ $$aTo examine the mechanisms of functional bimanual synchronization in goal-directed movements, we studied the movement kinematics of motorically unimpaired subjects while they performed repetitive prehension movements (either unimanually or bimanually) to small food items. Compared to unimanual conditions, bimanual movement execution yielded a significantly prolonged mouth contact phase. We hypothesized that this threefold prolongation led to a proper functional synchronization of the movement onsets of both hands at the beginning of each new movement cycle. That these temporal adjustments occurred in the movement phase with maximal haptic input points to the importance of sensory feedback for bimanual coordination. These results are discussed with respect to the important role of sensory feedback in the timing of coordinated bimanual movements. Furthermore, we propose that time-based coordinating schemas, which are implemented by the cerebellum and the posterior parietal cortex using sensory feedback, underlie functional inter-limb coordination.
000022824 536__ $$0G:(DE-Juel1)FUEK409$$2G:(DE-HGF)$$aFunktion und Dysfunktion des Nervensystems (FUEK409)$$cFUEK409$$x0
000022824 536__ $$0G:(DE-HGF)POF2-89572$$a89572 - (Dys-)function and Plasticity (POF2-89572)$$cPOF2-89572$$fPOF II T$$x1
000022824 588__ $$aDataset connected to Web of Science, Pubmed
000022824 65320 $$2Author$$aBimanual coordination
000022824 65320 $$2Author$$aFunctional synchronization
000022824 65320 $$2Author$$aPrehension movements
000022824 65320 $$2Author$$aSensory feedback
000022824 65320 $$2Author$$aCerebellum
000022824 65320 $$2Author$$aParietal cortex
000022824 650_2 $$2MeSH$$aAdult
000022824 650_2 $$2MeSH$$aBiomechanics: physiology
000022824 650_2 $$2MeSH$$aFemale
000022824 650_2 $$2MeSH$$aHand Strength: physiology
000022824 650_2 $$2MeSH$$aHumans
000022824 650_2 $$2MeSH$$aMale
000022824 650_2 $$2MeSH$$aMiddle Aged
000022824 650_2 $$2MeSH$$aMovement: physiology
000022824 650_2 $$2MeSH$$aPsychomotor Performance: physiology
000022824 650_7 $$2WoSType$$aJ
000022824 7001_ $$0P:(DE-HGF)0$$aJeannerod, M.$$b1
000022824 7001_ $$0P:(DE-Juel1)131748$$aWeiss, P.H.$$b2$$uFZJ
000022824 773__ $$0PERI:(DE-600)1459099-2$$a10.1007/s00221-011-2990-7$$gVol. 217, p. 261 - 271$$p261 - 271$$q217<261 - 271$$tExperimental brain research$$v217$$x0014-4819$$y2012
000022824 8567_ $$uhttp://dx.doi.org/10.1007/s00221-011-2990-7
000022824 909CO $$ooai:juser.fz-juelich.de:22824$$pVDB
000022824 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000022824 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000022824 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000022824 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000022824 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000022824 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000022824 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000022824 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000022824 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000022824 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000022824 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000022824 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000022824 9141_ $$y2012
000022824 9132_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000022824 9131_ $$0G:(DE-HGF)POF2-89572$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$v(Dys-)function and Plasticity$$x1
000022824 9201_ $$0I:(DE-Juel1)INM-3-20090406$$gINM$$kINM-3$$lKognitive Neurowissenschaften$$x0
000022824 970__ $$aVDB:(DE-Juel1)139596
000022824 980__ $$aVDB
000022824 980__ $$aConvertedRecord
000022824 980__ $$ajournal
000022824 980__ $$aI:(DE-Juel1)INM-3-20090406
000022824 980__ $$aUNRESTRICTED