Home > Publications database > Functional synchronization in repetitive bimanual prehension movements > print |
001 | 22824 | ||
005 | 20210129210832.0 | ||
024 | 7 | _ | |2 pmid |a pmid:22227856 |
024 | 7 | _ | |2 DOI |a 10.1007/s00221-011-2990-7 |
024 | 7 | _ | |2 WOS |a WOS:000300580900009 |
037 | _ | _ | |a PreJuSER-22824 |
041 | _ | _ | |a eng |
082 | _ | _ | |a 610 |
084 | _ | _ | |2 WoS |a Neurosciences |
100 | 1 | _ | |0 P:(DE-HGF)0 |a Christel, M.I. |b 0 |
245 | _ | _ | |a Functional synchronization in repetitive bimanual prehension movements |
260 | _ | _ | |a Berlin |b Springer |c 2012 |
300 | _ | _ | |a 261 - 271 |
336 | 7 | _ | |a Journal Article |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a article |2 DRIVER |
440 | _ | 0 | |0 2022 |a Experimental Brain Research |v 217 |x 0014-4819 |
500 | _ | _ | |a The authors wish to thank the subjects for their participation and Yves Paulignan for expert technical assistance. We thank the anonymous reviewers for their valuable comments on the previous versions of the manuscript. This project was supported by the Deutsche Forschungsgemeinschaft (DFG Ch 149/4-1) and by a grant of the Freie Universitat of Berlin (KFN) to MIC). |
520 | _ | _ | |a To examine the mechanisms of functional bimanual synchronization in goal-directed movements, we studied the movement kinematics of motorically unimpaired subjects while they performed repetitive prehension movements (either unimanually or bimanually) to small food items. Compared to unimanual conditions, bimanual movement execution yielded a significantly prolonged mouth contact phase. We hypothesized that this threefold prolongation led to a proper functional synchronization of the movement onsets of both hands at the beginning of each new movement cycle. That these temporal adjustments occurred in the movement phase with maximal haptic input points to the importance of sensory feedback for bimanual coordination. These results are discussed with respect to the important role of sensory feedback in the timing of coordinated bimanual movements. Furthermore, we propose that time-based coordinating schemas, which are implemented by the cerebellum and the posterior parietal cortex using sensory feedback, underlie functional inter-limb coordination. |
536 | _ | _ | |0 G:(DE-Juel1)FUEK409 |2 G:(DE-HGF) |x 0 |c FUEK409 |a Funktion und Dysfunktion des Nervensystems (FUEK409) |
536 | _ | _ | |0 G:(DE-HGF)POF2-89572 |a 89572 - (Dys-)function and Plasticity (POF2-89572) |c POF2-89572 |f POF II T |x 1 |
588 | _ | _ | |a Dataset connected to Web of Science, Pubmed |
650 | _ | 2 | |2 MeSH |a Adult |
650 | _ | 2 | |2 MeSH |a Biomechanics: physiology |
650 | _ | 2 | |2 MeSH |a Female |
650 | _ | 2 | |2 MeSH |a Hand Strength: physiology |
650 | _ | 2 | |2 MeSH |a Humans |
650 | _ | 2 | |2 MeSH |a Male |
650 | _ | 2 | |2 MeSH |a Middle Aged |
650 | _ | 2 | |2 MeSH |a Movement: physiology |
650 | _ | 2 | |2 MeSH |a Psychomotor Performance: physiology |
650 | _ | 7 | |2 WoSType |a J |
653 | 2 | 0 | |2 Author |a Bimanual coordination |
653 | 2 | 0 | |2 Author |a Functional synchronization |
653 | 2 | 0 | |2 Author |a Prehension movements |
653 | 2 | 0 | |2 Author |a Sensory feedback |
653 | 2 | 0 | |2 Author |a Cerebellum |
653 | 2 | 0 | |2 Author |a Parietal cortex |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Jeannerod, M. |b 1 |
700 | 1 | _ | |0 P:(DE-Juel1)131748 |a Weiss, P.H. |b 2 |u FZJ |
773 | _ | _ | |0 PERI:(DE-600)1459099-2 |a 10.1007/s00221-011-2990-7 |g Vol. 217, p. 261 - 271 |p 261 - 271 |q 217<261 - 271 |t Experimental brain research |v 217 |x 0014-4819 |y 2012 |
856 | 7 | _ | |u http://dx.doi.org/10.1007/s00221-011-2990-7 |
909 | C | O | |o oai:juser.fz-juelich.de:22824 |p VDB |
913 | 2 | _ | |0 G:(DE-HGF)POF3-572 |1 G:(DE-HGF)POF3-570 |2 G:(DE-HGF)POF3-500 |a DE-HGF |b Key Technologies |l Decoding the Human Brain |v (Dys-)function and Plasticity |x 0 |
913 | 1 | _ | |0 G:(DE-HGF)POF2-89572 |a DE-HGF |v (Dys-)function and Plasticity |x 1 |4 G:(DE-HGF)POF |1 G:(DE-HGF)POF3-890 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-800 |b Programmungebundene Forschung |l ohne Programm |
914 | 1 | _ | |y 2012 |
915 | _ | _ | |0 StatID:(DE-HGF)0010 |2 StatID |a JCR/ISI refereed |
915 | _ | _ | |0 StatID:(DE-HGF)0100 |2 StatID |a JCR |
915 | _ | _ | |0 StatID:(DE-HGF)0110 |2 StatID |a WoS |b Science Citation Index |
915 | _ | _ | |0 StatID:(DE-HGF)0111 |2 StatID |a WoS |b Science Citation Index Expanded |
915 | _ | _ | |0 StatID:(DE-HGF)0150 |2 StatID |a DBCoverage |b Web of Science Core Collection |
915 | _ | _ | |0 StatID:(DE-HGF)0199 |2 StatID |a DBCoverage |b Thomson Reuters Master Journal List |
915 | _ | _ | |0 StatID:(DE-HGF)0200 |2 StatID |a DBCoverage |b SCOPUS |
915 | _ | _ | |0 StatID:(DE-HGF)0300 |2 StatID |a DBCoverage |b Medline |
915 | _ | _ | |0 StatID:(DE-HGF)0310 |2 StatID |a DBCoverage |b NCBI Molecular Biology Database |
915 | _ | _ | |0 StatID:(DE-HGF)0420 |2 StatID |a Nationallizenz |
915 | _ | _ | |0 StatID:(DE-HGF)1030 |2 StatID |a DBCoverage |b Current Contents - Life Sciences |
915 | _ | _ | |0 StatID:(DE-HGF)1050 |2 StatID |a DBCoverage |b BIOSIS Previews |
920 | 1 | _ | |0 I:(DE-Juel1)INM-3-20090406 |g INM |k INM-3 |l Kognitive Neurowissenschaften |x 0 |
970 | _ | _ | |a VDB:(DE-Juel1)139596 |
980 | _ | _ | |a VDB |
980 | _ | _ | |a ConvertedRecord |
980 | _ | _ | |a journal |
980 | _ | _ | |a I:(DE-Juel1)INM-3-20090406 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|