000022887 001__ 22887
000022887 005__ 20200702121628.0
000022887 0247_ $$2DOI$$a10.5194/hess-16-2957-2012
000022887 0247_ $$2WOS$$aWOS:000308245800039
000022887 0247_ $$2Handle$$a2128/7594
000022887 0247_ $$2altmetric$$aaltmetric:21808590
000022887 037__ $$aPreJuSER-22887
000022887 041__ $$aeng
000022887 082__ $$a550
000022887 084__ $$2WoS$$aGeosciences, Multidisciplinary
000022887 084__ $$2WoS$$aWater Resources
000022887 1001_ $$0P:(DE-HGF)0$$aCouvreur, V.$$b0
000022887 245__ $$aA simple three-dimensional macroscopic root water uptake model based on the hydraulic architecture approach
000022887 260__ $$aKatlenburg-Lindau$$bEGU$$c2012
000022887 300__ $$a2957 - 2971
000022887 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000022887 3367_ $$2DataCite$$aOutput Types/Journal article
000022887 3367_ $$00$$2EndNote$$aJournal Article
000022887 3367_ $$2BibTeX$$aARTICLE
000022887 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000022887 3367_ $$2DRIVER$$aarticle
000022887 440_0 $$022262$$aHydrology and Earth System Sciences$$v16$$x1027-5606$$y8
000022887 500__ $$3POF3_Assignment on 2016-02-29
000022887 500__ $$aV.C. is supported by the "Fonds National de la Recherche Scientifique" (FNRS) of Belgium as a Research Fellow. The authors thank this funding agency for its financial support. We also thank Sjoerd van der Zee for his valuable comments, which helped to improve the final version of this manuscript.
000022887 520__ $$aMany hydrological models including root water uptake (RWU) do not consider the dimension of root system hydraulic architecture (HA) because explicitly solving water flow in such a complex system is too time consuming. However, they might lack process understanding when basing RWU and plant water stress predictions on functions of variables such as the root length density distribution. On the basis of analytical solutions of water flow in a simple HA, we developed an "implicit" model of the root system HA for simulation of RWU distribution (sink term of Richards' equation) and plant water stress in three-dimensional soil water flow models. The new model has three macroscopic parameters defined at the soil element scale, or at the plant scale, rather than for each segment of the root system architecture: the standard sink fraction distribution SSF, the root system equivalent conductance K-rs and the compensatory RWU conductance K-comp. It clearly decouples the process of water stress from compensatory RWU, and its structure is appropriate for hydraulic lift simulation. As compared to a model explicitly solving water flow in a realistic maize root system HA, the implicit model showed to be accurate for predicting RWU distribution and plant collar water potential, with one single set of parameters, in dissimilar water dynamics scenarios. For these scenarios, the computing time of the implicit model was a factor 28 to 214 shorter than that of the explicit one. We also provide a new expression for the effective soil water potential sensed by plants in soils with a heterogeneous water potential distribution, which emerged from the implicit model equations. With the proposed implicit model of the root system HA, new concepts are brought which open avenues towards simple and mechanistic RWU models and water stress functions operational for field scale water dynamics simulation.
000022887 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000022887 588__ $$aDataset connected to Web of Science
000022887 650_7 $$2WoSType$$aJ
000022887 7001_ $$0P:(DE-Juel1)129548$$aVanderborght, J.$$b1$$uFZJ
000022887 7001_ $$0P:(DE-Juel1)129477$$aJavaux, M.$$b2$$uFZJ
000022887 773__ $$0PERI:(DE-600)2100610-6$$a10.5194/hess-16-2957-2012$$gVol. 16, p. 2957 - 2971$$p2957 - 2971$$q16<2957 - 2971$$tHydrology and earth system sciences$$v16$$x1027-5606$$y2012
000022887 8567_ $$uhttp://dx.doi.org/10.5194/hess-16-2957-2012
000022887 8564_ $$uhttps://juser.fz-juelich.de/record/22887/files/FZJ-22887.pdf$$yOpenAccess$$zPublished final document.
000022887 8564_ $$uhttps://juser.fz-juelich.de/record/22887/files/FZJ-22887.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000022887 8564_ $$uhttps://juser.fz-juelich.de/record/22887/files/FZJ-22887.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000022887 8564_ $$uhttps://juser.fz-juelich.de/record/22887/files/FZJ-22887.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000022887 909CO $$ooai:juser.fz-juelich.de:22887$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire$$pdnbdelivery
000022887 9131_ $$0G:(DE-Juel1)FUEK407$$1G:(DE-HGF)POF2-240$$2G:(DE-HGF)POF2-200$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000022887 9132_ $$0G:(DE-HGF)POF3-259H$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bMarine, Küsten- und Polare Systeme$$lTerrestrische Umwelt$$vAddenda$$x0
000022887 9141_ $$y2012
000022887 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000022887 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000022887 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000022887 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000022887 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000022887 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000022887 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000022887 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000022887 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000022887 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000022887 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$gIBG$$kIBG-3$$lAgrosphäre$$x0
000022887 970__ $$aVDB:(DE-Juel1)139682
000022887 980__ $$aVDB
000022887 980__ $$aConvertedRecord
000022887 980__ $$ajournal
000022887 980__ $$aI:(DE-Juel1)IBG-3-20101118
000022887 980__ $$aUNRESTRICTED
000022887 980__ $$aJUWEL
000022887 980__ $$aFullTexts
000022887 9801_ $$aFullTexts