000022903 001__ 22903
000022903 005__ 20210129210834.0
000022903 0247_ $$2pmid$$apmid:22684689
000022903 0247_ $$2DOI$$a10.1002/jcc.23037
000022903 0247_ $$2WOS$$aWOS:000307889900005
000022903 037__ $$aPreJuSER-22903
000022903 041__ $$aeng
000022903 082__ $$a540
000022903 084__ $$2WoS$$aChemistry, Multidisciplinary
000022903 1001_ $$0P:(DE-HGF)0$$aReckien, W.$$b0
000022903 245__ $$aImplementation of empirical dispersion corrections to density functional theory for periodic systems
000022903 260__ $$aNew York, NY [u.a.]$$bWiley$$c2012
000022903 300__ $$a2023 - 2031
000022903 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000022903 3367_ $$2DataCite$$aOutput Types/Journal article
000022903 3367_ $$00$$2EndNote$$aJournal Article
000022903 3367_ $$2BibTeX$$aARTICLE
000022903 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000022903 3367_ $$2DRIVER$$aarticle
000022903 440_0 $$03212$$aJournal of Computational Chemistry$$v33$$x0192-8651$$y25
000022903 500__ $$aContract/grant sponsor: Collaborative Research Center SFB 624, Deutsche Forschungsgemeinschaft.
000022903 520__ $$aA recently developed empirical dispersion correction (Grimme et al., J. Chem. Phys. 2010, 132, 154104) to standard density functional theory (DFT-D3) is implemented in the plane-wave program package VASP. The DFT-D3 implementation is compared with an implementation of the earlier DFT-D2 version (Grimme, J. Comput. Chem. 2004, 25, 1463; Grimme, J. Comput. Chem. 2006, 27, 1787). Summation of empirical pair potential terms is performed over all atom pairs in the reference cell and over atoms in shells of neighboring cells until convergence of the dispersion energy is obtained. For DFT-D3, the definition of coordination numbers has to be modified with respect to the molecular version to ensure convergence. The effect of three-center terms as implemented in the original molecular DFT-D3 version is investigated. The empirical parameters are taken from the original DFT-D3 version where they had been optimized for a reference set of small molecules. As the coordination numbers of atoms in bulk and surfaces are much larger than in the reference compounds, this effect has to be discussed. The results of test calculations for bulk properties of metals, metal oxides, benzene, and graphite indicate that the original parameters are also suitable for solid-state systems. In particular, the interlayer distance in bulk graphite and lattice constants of molecular crystals is considerably improved over standard functionals. With the molecular standard parameters (Grimme et al., J. Chem. Phys. 2010, 132, 154104; Grimme, J. Comput. Chem. 2006, 27, 1787) a slight overbinding is observed for ionic oxides where dispersion should not contribute to the bond. For simple adsorbate systems, such as Xe atoms and benzene on Ag(111), the DFT-D implementations reproduce experimental results with a similar accuracy as more sophisticated approaches based on perturbation theory (Rohlfing and Bredow, Phys. Rev. Lett. 2008, 101, 266106).
000022903 536__ $$0G:(DE-Juel1)FUEK411$$2G:(DE-HGF)$$aScientific Computing (FUEK411)$$cFUEK411$$x0
000022903 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x1
000022903 588__ $$aDataset connected to Web of Science, Pubmed
000022903 65320 $$2Author$$adensity functional theory
000022903 65320 $$2Author$$adispersion interaction
000022903 65320 $$2Author$$asolids
000022903 65320 $$2Author$$asurfaces
000022903 650_7 $$2WoSType$$aJ
000022903 7001_ $$0P:(DE-Juel1)132149$$aJanetzko, F.$$b1$$uFZJ
000022903 7001_ $$0P:(DE-HGF)0$$aPeintinger, M.F.$$b2
000022903 7001_ $$0P:(DE-HGF)0$$aBredow, T.$$b3
000022903 773__ $$0PERI:(DE-600)1479181-x$$a10.1002/jcc.23037$$gVol. 33, p. 2023 - 2031$$p2023 - 2031$$q33<2023 - 2031$$tJournal of computational chemistry$$v33$$x0192-8651$$y2012
000022903 8567_ $$uhttp://dx.doi.org/10.1002/jcc.23037
000022903 909CO $$ooai:juser.fz-juelich.de:22903$$pVDB
000022903 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000022903 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000022903 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000022903 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000022903 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000022903 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000022903 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000022903 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000022903 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000022903 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000022903 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000022903 9141_ $$y2012
000022903 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000022903 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x1
000022903 9201_ $$0I:(DE-Juel1)JSC-20090406$$gJSC$$kJSC$$lJülich Supercomputing Centre$$x0
000022903 970__ $$aVDB:(DE-Juel1)139700
000022903 980__ $$aVDB
000022903 980__ $$aConvertedRecord
000022903 980__ $$ajournal
000022903 980__ $$aI:(DE-Juel1)JSC-20090406
000022903 980__ $$aUNRESTRICTED