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We present theoretical studies of syntectic and monotectic solidification scenarios. Steady-state solidification

along the liquid-liquid interface in a syntectic system is considered by means of a boundary-integral technique

developed previously. We study the case of small asymmetry of the pattern and extract from the results the scaling

relations in terms of the undercooling and the asymmetry parameter. We also investigate monotectic solidification

using the phase-field method. We present two kinds of two-phase fingers, with the solid phase being either the

exterior phase or the interior phase, and the pattern corresponding to the growth along the solid-liquid interface.

We finally analyze the asymptotic shape of these new morphologies far behind their tip.

DOI: 10.1103/PhysRevE.86.021603 PACS number(s): 68.08.−p, 64.70.dg

I. INTRODUCTION

The occurrence of syntectic transitions is rather rare

in established large-scale industrial metallurgical processes.

Among the materials which exhibit a syntectic point we

mention P-Sn [1], which has relevance for lead-free solders [2],

or U-Pb [3]. In syntectic systems the three-phase equilibrium

consists of two liquid phases and one solid phase (see Fig. 1),

which is similar in this sense to the monotectic equilibrium.

However, unlike the monotectic system, the syntectic one

may exhibit a symmetric phase diagram which drastically

simplifies the solidification problem. In this paper we study

small deviations from this symmetric case in order to extract

scaling relations.

The physical processes involved below or above the

syntectic temperature include diffusion of solutal elements,

convection, and gravity effects. However, we are interested

here in the solidification along the liquid-liquid interface in

a general picture of three-phase equilibrium in binary alloys

(eutectic, peritectic, eutectoid, etc.), and we restrict our study

to solutal diffusion, which is assumed to take place only in

liquid phases.

We study the solidification problem in the syntectic system,

which is initiated by the syntectic reaction at the liquid-

liquid interface, the subsequent transformation occurring as

growth of the solid zone along the liquid-liquid interface [4].

Method of choice is the boundary-integral technique, using the

framework developed in Ref. [5] for the solidification of mono-

tectics. This boundary-integral formulation is designed for the

modeling of one liquid-liquid and two solid-liquid interfaces.

The solidification takes place along the liquid-liquid boundary,

and the solid phase appears as a finger-like shape; see Fig. 2.

In the syntectic system, the liquid-liquid mixture is the

metastable state below the syntectic temperature for the whole

range of concentrations of the syntectic plateau (see Fig. 1).

This is different from the monotectic phase diagram, where

below the monotectic temperature three possible metastable

states exist. In Ref. [5] we studied only the solidification along

the liquid-liquid interface. In this work, to complete the study

of the phase transition in the monotectic system, we present

patterns by the phase-field method which are obtained for the

two remaining possible metastable states, i.e., a single liquid

phase and a solid-liquid equilibrium.

II. PHASE DIAGRAM, GEOMETRY, AND

BOUNDARY-INTEGRAL FORMULATION

A. Phase diagram

At the syntectic temperature the three-phase equilibrium

consists of two liquids L1 and L2 and one solid phase S with

concentrations c1,c2, and cS , respectively. The concentration

of the solid phase lies in the interval between the concentration

of the two liquids such that c1 < cS < c2. Above the syntectic

temperature, the thermodynamic equilibrium consists of a

(L1 + L2) mixture. The liquid-liquid two-phase region spans

the whole range of concentrations between c1 and c2. Below

the syntectic temperature the (L1 + L2) mixture is metastable

with concentration c12 in L1 and c21 in L2 (see Fig. 1).

The phase transition is then controlled by the fluxes in L1

(whose concentration is c1S in equilibrium in with S) and

in L2 (whose concentration is c2S in equilibrium in with S).

The concentrations in the solid S are then cS1 in equilibrium

with L1 and cS2 in equilibrium with L2. One defines two

control parameters which are the driving forces for classical

dendritic solidification �1 = (c12 − c1S)/(cS − c1) and �2 =
(c2S − c21)/(c2 − cS).

Below the syntectic temperature, three thermodynamic

equilibrium domains exist, depending on the concentration of

the alloy. If the concentration of the alloy is smaller than cS1,

then the (L1 + S) mixture corresponds to the thermodynamic

equilibrium. If the concentration of the alloy is larger than cS2,

then the thermodynamic equilibrium is the (S + L2) mixture.

If the concentration of the alloy lies in the interval between cS1

and cS2, the thermodynamic equilibrium consists of a single

solid phase S.

B. Geometry

A finger-like solid phase S is growing along the L1/L2

metastable interface. We consider a two-dimensional pattern

with the triple junction as a single point (see Fig. 2).

Asymptotically far ahead of the triple junction, the L1/L2

interface is aligned with the direction y of the steady-state

velocity υ. The triple junction does not have the same position

in the x direction as the asymptotic L1/L2 interface, the

difference being denoted by a. Moreover, at the triple junction,
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FIG. 1. Phase diagram of the syntectic system.

there is an angle δ between the L1/L2 interface and the growth

direction y. Far behind the triple junction, the solid-liquid

interfaces S/L1 and S/L2 match separate Ivantsov parabolas

[6] of radius ρ1 and ρ2, respectively. The scaling laws observed

in the monotectic alloy [5] and in the eutectic two-phase

finger [7] (in a certain limit) suggest that the Ivantsov radius

is significantly smaller than the length scale governing the

curvatures at the triple junction. The main cancellations of

the different terms in the boundary-integral equations operate

on a smaller scale than the one needed to match the Ivantsov

parabola.

Since we consider an infinite space and since the metastable

state consists of a two-phase mixture, the global concentration

of the alloy does not enter into the problem. Our results thus do

not presuppose any position on the concentration axis on the

syntectic plateau (between c1 and c2). However, different cases

exist depending on the equilibrium domain where the operating

point, i.e., the temperature and the global concentration of the

alloy, lies. The ultimate thermodynamic equilibrium is then

reached through solid bulk diffusion on scales much larger

than the tip region considered here.

FIG. 2. Close-up of the triple junction region for a typical

solution. The solid S grows with velocity υ along the metastable

liquid-liquid (L1/L2) interface, which is aligned with υ far ahead of

the triple junction. In the x direction, the triple junction is shifted by a

distance a from the asymptotic position of the liquid-liquid interface.

The latter adopts at the triple junction an angle δ with the velocity

direction. The dots indicate the discretization of the interfaces; the

vertical asymptotics of the interface L1/L2 are satisfied at larger

distances to the tip, outside the shown region.

C. Boundary-integral formulation

Based on the geometry of the problem and the phase

diagram, we obtain the resulting formal presentation of the

system. Specifically, we consider steady-state solutions for

equal diffusion coefficients in the liquid phases and vanishing

diffusion in the growing solid phase. This type of hybrid model,

which we first introduced in Ref. [5], thus yields a one-sided

model representation [8] of the liquid-solid interfaces and a

symmetric model representation of the liquid-liquid interface

[9]. The symmetry of the liquid phases also yields equal

Gibbs-Thomson corrections to the equilibrium concentrations

c12 and c21. Thus, the solution of the entire problem is reduced

to the solution of three coupled integro-differential equations

which represent the local equilibria at the different interfaces.

The first two of these equations, which are obtained for the

solid-liquid interfaces S/Li (i = 1,2), read

1

2

ci − cS

c2 − c1

{

�i −
d0

ρ1

κ[ySi(x)]

}

= I [x,ySi(x)], (1)

and the third equation, for the L1/L2 interface, becomes

−
d0

ρ1

κ[x12(y)] = I [x12(y),y]. (2)

The integral I [x,y] which determines the concentration at any

point of the space (x,y) reduces to an integration along the

three curves yS1(x),yS2(x),x12(y), representing the three inter-

faces S/L1, S/L2, and L1/L2, respectively. We measure all

lengths in units of the Ivantsov radius ρ1. The capillary length

d0 is assumed to be the same on all interfaces without loss of

generality, and the curvature is κ[y(x)] = −(d2y/dx2)/[1 +
(dy/dx)2]3/2. At the triple junction, the liquid-liquid interface

obeys dx12/dy = − tan(δ), and the self-selected angle δ(>0 in

Fig. 2) sets the slopes, precisely dy1S/dx = 1/ tan(φ − δ) and

dy2S/dx = −1/ tan(φ + δ), where φ > 0 is the contact angle

given by Young’s law.

Putting the origin of coordinates at the triple junction, the

integral reads

I [x,y] =
p1

2π

c2 − cS

c2 − c1

∫ 0

−∞
dx ′

[

2g(x,y; x ′,y ′
S2)

−
{

�2 −
d0

ρ1

κ[yS2(x ′)]

}

g′(x,y; x ′,y ′
S2)

]

+
p1

2π

c1 − cS

c2 − c1

∫ ∞

0

dx ′
[

2g(x,y; x ′,y ′
S1)

−
{

�1 −
d0

ρ1

κ[yS1(x ′)]

}

g′(x,y; x ′,y ′
S1)

]

+
p1

π

∫ ∞

0

dy ′g(x,y; x ′
12,y

′)
dx ′

12

dy ′ . (3)

The first two terms come from the integration along the solid-

liquid interfaces, and we define the Green’s function

g(x,y; x ′,y ′) = exp[−p1(y − y ′)]K0(p1η)

and its derivative

g′(x,y; x ′,y ′) = exp[−p1(y − y ′)]

× [K0(p1η) + f (x,y; x ′,y ′)K1(p1η)],

021603-2



SOLIDIFICATION IN SYNTECTIC AND MONOTECTIC . . . PHYSICAL REVIEW E 86, 021603 (2012)

where p1 = ρ1υ/2D is the Péclet number linked to

ρ1. K0(K1) is the modified Bessel function of zeroth

(first) order, η =
√

(x − x ′)2 + (y − y ′)2, and f (x,y; x ′,y ′) =
[(x − x ′)dy ′/dx ′ − (y − y ′)]/η.

The driving force �i is related to the Péclet number

pi = υρi/2D by the Ivantsov relation [6],

�i =
√

πpi exp(pi) erfc(
√

pi) (4)

∼
√

πpi, �i ≪ 1.

In order to study the influence of the asymmetry and the

undercooling, we rewrite the two solidification driving forces

as

�1 = (1 − ǫ)�, (5)

�2 = (1 + ǫ)�, (6)

where we introduced the asymmetry parameter ǫ, and the

undercooling � is proportional to the deviation from the syn-

tectic equilibrium temperature. One should note that the case

ǫ = 0 corresponds to a fully symmetric pattern where the

liquid-liquid interface is the axis of symmetry and the last

term on the right-hand side of Eq. (3) vanishes. In opposition

to the monotectic system, for which the topology of the phase

diagram necessarily implies a strong asymmetry of the pattern

(cf. Ref. [5]), we will focus in this work on small deviations

from the symmetric pattern, i.e., ǫ ≪ 1.

III. RESULTS: SYNTECTIC SYSTEM

The solution of the set of equations defined by Eqs. (1) and

(2) includes the shapes of the interfaces as well as the values

of d0/ρ1, a/ρ1, and the angle δ. The transition velocity then

is obtained via the Ivantsov relation [Eq. (4)], which implictly

gives the Péclet number pi = υρi/2D for given undercooling.

We choose the opening angle φ = π/3 and the miscibility

gap ratios (c2 − cS)/(c2 − c1) = 1/2, (c1 − cS)/(c2 − c1) =
−1/2, which is appropriate for an intuitive definition of the

asymmetry parameter. Specifically, as mentioned above, the

growth direction becomes the axis of symmetry of the pattern

as ǫ → 0. A first impression of the results is obtained by the

close-up of an exemplary shape in Fig. 2. At the triple junction,

the length scale which describes the pattern is the inverse of

the curvature close to the triple junction, which we define as

λi = (κ[ySi(x)]|x→0)−1. In Fig. 3(a) we present the variation

of λi�/d0 with respect to ǫ, for � = 0.15 and � = 0.1. Due

to small numerical inaccuracies in the discretization of the

integrals (we used about 150 grid points for the interface

discretization, which are distributed nonuniformly as shown

in Fig. 2), the values of λ1�/d0 and λ2�/d0 do not exactly

coincide in the limit ǫ → 0; In calculations valid only at ǫ = 0,

this discrepancy is reduced, and the common value λ�/d0 is

approximately the average of λi�/d0 at ǫ = 0. One clearly

sees that λ1�/d0 and λ2�/d0 have a linear variation with

opposite slopes of about ±3.5. In Fig. 3(b) we plot λ�/d0

versus � for ǫ = 0, with λ = λi(ǫ = 0). We clearly see that in

the limit � → 0, λ�/d0 is constant. The information provided

by Figs. 3(a) and 3(b) suggests that the inverse of the curvatures

of the solid-liquid interfaces at the triple junction λi(�,ǫ)

obeys a scaling law given by λi/λ − 1 ∼ ǫ with λ/d0 ∼ 1/�

in the regimes � ≪ 1,ǫ ≪ 1.

1

(b)  1.1 

0  0.25  0.5  0.75

 0.8

 (a)   1.4

0  0.025  0.05  0.075

λ
i
∆ /d

0

λ ∆ /d
0

ε

∆

FIG. 3. (a) Linear dependence of λi�/d0 with respect to the

asymmetry parameter ǫ. For � = 0.15 crosses indicate i = 1, filled

circles i = 2, for � = 0.1, open circles i = 1, and boxes i = 2. The

numerical inaccuracy explained above briefly is responsible for the

slight difference between λ1�/d0 and λ2�/d0 when ǫ → 0. (b) Plot

of λ�/d0 versus driving force � for ǫ = 0, where λ is the common

value of λ1 and λ2.

Concerning the rotation angle δ, we present in Fig. 4 its

variation with respect to ǫ for � = 0.15 and � = 0.10. We

clearly see that δ increases linearly with ǫ, at the same time

being independent of �.

Concerning the asymptotic lateral shift of the liquid-liquid

interface a as y → ∞, we present the quantity a�/d0 versus

ǫ in Fig. 5 for � = 0.15 and � = 0.10. The figure clearly

suggests that the scaling of a is a/d0 ∼ ǫ/� in the regime

� ≪ 1,ǫ ≪ 1.

The remaining unknown is the velocity υ, which is related to

ρi by the Ivantsov relation [Eq. (4)]. In Fig. 6 where υd0/2D

is given versus ǫ for � = 0.15, we see that the velocity is

independent of ǫ in the range of investigated values of ǫ. One

should note that the absence of a linear dependence of the

velocity on ǫ can be understood by symmetry; i.e., changing

the sign of ǫ should not change the value of the velocity.

Therefore, the first variation of υ is of order ǫ2, which is weak

in the range of ǫ presented in Fig. 6.

0

 0.05

 0.1

 0.15

 0.2

 0.25

0  0.025  0.05  0.075

δ

ε

FIG. 4. The rotation angle of the triple junction δ. The crosses

correspond to � = 0.15, the boxes to � = 0.1.
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FIG. 5. The ratio a�/d0 as function of the asymmetry parameter

ǫ. The crosses correspond to � = 0.15 and the boxes to � = 0.1.

The dependence of υ on � is illustrated in Fig. 7 through

the plot of υλ2/2d0D versus � for ǫ = 0. We recall that λ

is the common value of λ1 and λ2 for ǫ = 0. We see that

υλ2/2d0D is independent of � for � ≪ 1. The invariance

of this quantity reminds one of the case of classical dendritic

[8] or eutectic growth [7,10]. Consequently, we obtain the

velocity scaling υd0/2D ∼ �2 in the regime � ≪ 1,ǫ ≪ 1.

Since υd0/2D = p1d0/ρ1 ∼ �2
1d0/ρ1 = (1 − ǫ)2�2d0/ρ1 in

the regime � ≪ 1, we have υd0/2D ∼ (1 − 2ǫ)�2d0/ρ1 and

therefore d0/ρ1 ∼ 1 + 2ǫ in the regime � ≪ 1,ǫ ≪ 1. By

the same arguments, we have d0/ρ2 ∼ 1 − 2ǫ. This means

that ρi/λ → 0 for � → 0, demonstrating the existence of

intermediate asymptotics as previously mentioned in Ref. [5]

and in Sec. II B. However, the intermediate asymptotics are

not the focus of this article.

We summarize the obtained results for the syntectic

solidification by the scaling laws for the regime � ≪ 1,ǫ ≪ 1:

λi

λ
− 1 ∼ ǫ;

λ

d0

∼
1

�
;

a

d0

∼
ǫ

�
; δ ∼ ǫ;

υd0

D
∼ �2.

(7)

IV. RESULTS: MONOTECTIC SYSTEM

We present now in this part a phase-field study of the

isothermal solidification in the monotectic system that com-

plements our previous study [5]. We adapted a phase-field

 0.009

 0.01 

0  0.025  0.05  0.075

ε

υ
d

0
/ 

2
 D

FIG. 6. The dimensionless velocity υd0/2D versus ǫ for � = 0.15.
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d
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∆

FIG. 7. The invariant υλ2/2d0D of the syntectic solidification

versus � for ǫ = 0.

model initially developed for the solidification of eutectic or

peritectic alloys [11] in order to account for diffusion in the

two liquid phases. In Fig. 8 the monotectic phase diagram

is shown. As mentioned in the introduction, the liquid-liquid

equilibrium does not span the whole monotectic plateau in

the monotectic system. One has three possible metastable

states below the monotectic temperature (which are stable

above the monotectic temperature) depending on the global

concentration of the alloy: a (L1 + L2) liquid-liquid mixture,

a single L1 liquid phase, and a (S + L1) solid-liquid mixture.

We present in the following phase-field calculations of the

phase transitions occurring for a single metastable L1 phase

and a metastable (S + L1) mixture.

A. Metastable liquid phase L1

When the global concentration of the alloy is in the

neighborhood of the monotectic point, the metastable state

consists of a single L1 phase. In this region of the phase

diagram, the growth of the solid S and the liquid L2 may

proceed through a two-phase finger growth. The latter has

been described recently [7] in the eutectic system. The

pattern then consists of one growing solid phase exhibiting

Ivantsov asymptotics (exterior phase) surrounding the other

solid phase (interior phase). Since diffusion is neglected in the

solid phases, the interior phase is a straight lamella parallel

c

T

S

L1 L2

c21 c2Sc1Sc12

cS c1 c2

S + L1

L1 + L2

S + L2

FIG. 8. Monotectic phase diagram. The metastable continuation

of the boundaries of the (L1 + L2), and the (S + L1) equilibrium

domains are shown as dashed lines.
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to the direction of growth. In the monotectic system, the

two-phase finger can be of two kinds. The exterior phase

can be the solid phase S or the liquid phase L2. In the

present section, we present phase-field simulations of the two

patterns.

The fluxes in the neighborhood of the triple junction are

described by two dimensionless parameters �1 = (c1S − c12)/

(c1 − cS) and �2 = (c2S − c21)/(c2 − cS) (see Fig. 8). De-

pending on which phase is the exterior phase, the global

concentration of the alloy c∞ enters into the expression for a di-

mensionless solidification driving force, written in the standard

form for the classical dendrite as �S
∞ = (c1S − c∞)/(c1 − cS)

when the exterior phase is S and �L
∞ = (c12 − c∞)/(c1 − c2)

when the exterior phase is L2.

1. Two-phase finger with a solid exterior phase

In this case, the pattern is close to the one obtained in

eutectic systems, and the exterior solid phase exhibits Ivantsov

asymptotics. In Fig. 9(a) we present the corresponding pattern,

where the growth direction is indicated by the arrow. The ratio

of miscibility gaps at equilibrium is (c1 − cS)/(c2 − c1) =
0.86. The solidification driving forces are �1 = 0.252 and

�2 = 0.0540 (see Fig. 8). The concentration c∞ of the liquid

L1 far ahead of the tip of the pattern is such that �S
∞ = 0.225

and �L
∞ ≃ �S

∞/10. The selected pattern with the solid phase

as the exterior phase thus corresponds to the largest driving

force �S
∞. Here no flux exists in the liquid L2 far behind

the tip, and the S/L2 interface is parallel to the growth

direction. The lateral position (perpendicular to the growth

direction) of the S/L2 interface with respect to the axis of

symmetry of the pattern is a = 18.2d0, and the dimensionless

velocity is υd0/2D = 4.125 × 10−3. Therefore the quantity

a2υ/2D ≃ 1.37 is of order unity.

In Fig. 9(b) we present a phase-field simulation of an

oscillating two-phase finger. Here we have (c1 − cS)/(c2 −
c1) = 0.46, the driving forces are �1 = 0.088, �2 = 0.1�1,

and �S
∞ = 0.065 (�L

∞ ≃ �S
∞/6). The total width 2a of the L2

phase perpendicular to the growth direction oscillates between

60d0 and 105d0, and the dimensionless velocity averaged

over one period is υd0/2D = 2.18 × 10−4. Thus the quantity

a2υ/2D oscillates between 0.2 and 0.66 and is of order unity

again. This oscillating pattern reminds one of the oscillatory

S

L 2

L 1

L 2

S

L 1

(b)

2a

(a)

FIG. 9. (Color online) Two-phase finger with the solid (black)

surrounding the liquid L2 (green/gray) in (a) steady state and (b) an

oscillatory regime. The arrow indicates the growth direction.

regime in lamellar growth in eutectics (we actually obtained the

same kind of oscillatory regime previously during the growth

of eutectic two-phase fingers in the framework of phase-field

simulations) [12,13]. However, one should not exclude the

possibility of an extremely slow decay of the oscillations

towards a steady state. We observed at least ten periods without

damping of the oscillations of the velocity. One should also

not exclude an artificial stabilization of the oscillatory regime

when the interface width of the phase fields [11] (here about

0.2 a) is not well separated from the length scales of the pattern.

2. Two-phase finger with liquid exterior phase

In this second case, the liquid L2 surrounds the solid phase

S, and far behind the tip we have a L2-film-migration process

(LFM) [14,15], i.e., the combined motion of two parabolic

fronts enclosing the L2 phase. In Fig. 10 we present this pattern.

It was obtained when (c1 − cS)/(c2 − c1) = 2, �1 = 0.105,

�2 = 0.0467, and for c∞ = c1. Then we have �L
∞ = 0.167

and �S
∞ ≃ �L

∞/8. Therefore, the obtained pattern with the

liquid phase as exterior phase is the one that corresponds to

the largest driving force �L
∞. The dimensionless velocity is

υd0/2D = 1.75 × 10−3, and the lateral position of the triple

junction with respect to the axis of symmetry of the finger

is a = 16.5d0. Therefore the quantity a2υ/2D = 0.48 is here

also of order unity.

Let us make a comment on the LFM process that occurs

here. In Ref. [14] the LFM has been theoretically studied, and

the Péclet numbers PS = υRS/2D and P2 = υR2/2D of the

two parabolic fronts S/L2 and L2/L1, respectively, of radius

RS and R2, have been determined depending on the control

parameters �2 and �L
∞. In the limit PS,P2 ≪ 1, one has

PS =
�2/2

λ − 1 + χ +
√

χ2 + 2(λ − 1)χ
, (8)

P2 = PS[λ + χ +
√

χ2 + 2(λ − 1)χ ]2, (9)

S

L2

L1

2a

FIG. 10. (Color online) Two-phase finger growth with the liquid

L2 (green/gray) surrounding the solid S (black). Far behind the tip,

one has a L2-film migration process.
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L
2

S

L
1

a

FIG. 11. (Color online) Growth along the S/L1 interface. Far

behind the tip, one has a L2-film migration process.

where λ = (c2 − cS)/(c2 − c1) > 1 and χ = (�L
∞)2/(π�2).

Here λ = 3 and χ = 0.190. Therefore the ratio P2/PS ≃ 10 is

large, and a quantitative comparison with the theory is difficult.

More precisely, the size of the simulated portion of the pattern

does not allow for an accurate determination of the curvature

of the S/L2 front.

It is interesting to note that χ , which tunes the ratio

P2/PS , has the same form as the quantity that determines

the ratio between the width of the interior lamella and the

Ivantsov radius for the growth of the two-phase finger in

the eutectic system [7]. In the case χ = 0, i.e., �L
∞ = 0, one

has PS = �2/(2λ − 2) and P2/PS = λ2. This result has been

presented for the LFM process above the peritectic temperature

in Ref. [16]. In the other limit χ → ∞, P2/PS → 4χ2, and

one recovers the Ivantsov relation for the L1/L2 interface; i.e.,

P2 ≃ (�L
∞)2/π becomes independent of �2.

B. Metastable solid-liquid mixture (S + L1)

When a (S + L1) mixture is brought into a metastable

state below the monotectic temperature, the transformation

consists of the growth of the solid S and the liquid L2 along

the metastable S/L1 interface. In Fig. 11 we present the

corresponding pattern. The S/L1 interface is aligned with the

direction of growth far ahead of the triple junction and adopts

an angle in its neighborhood. Far behind the triple junction,

one has again a L2-film migration process.

This pattern is close to the one described in Ref. [17] for

the melting of a peritectic alloy along the solid-solid interface.

However, here a lateral shift a (perpendicular to the growth

direction) of the triple junction with respect to the asymptotic

position of the metastable interface exists contrary to the case

where the metastable interface separates two solid phases.

The miscibility gaps are such that (c1 − cS)/(c2 − c1) = 2,

and the driving forces are �1 = 0.0524 and �2 = 0.0233.

The concentration in L1 far ahead of the triple junction is

c∞ = c1S , and thus �L
∞ = �1(c1 − cS)/(c2 − c1) = 0.105

and �S
∞ ≃ 0. Hence we have χ = 0.150 for the description of

the LFM process. Again λ = 3, and the size of the simulated

portion of the pattern does not allow one to calculate

accurately the ratio P2/PS .

V. SUMMARY

In this paper we have presented a study of the solidification

in the syntectic system applying a boundary integral technique

developed in our previous work [5] and a study of different

solidification scenarios in monotectic systems using the phase-

field method.

In the syntectic system we have focused on small deviations

from the symmetric pattern, corresponding to small values

ǫ ≪ 1 of an asymmetry parameter ǫ. We have extracted from

our boundary integral calculations the scaling relations of the

relevant length scales, the rotation angle of the triple junction

δ, and the growth velocity, which are summarized in Eq. (7).

For the monotectic system we have presented phase-field

simulations of scenarios of solidification complementary to

the solidification along the liquid-liquid interface presented

in Ref. [5]. First, we have studied the two-phase fingers

growing at the expense of a single metastable liquid phase. We

have obtained a two-phase finger with the solid phase as the

exterior phase which is close to the eutectic finger presented

in Ref. [7], and in addition we have shown the possibility

of oscillatory regimes of this mode of growth. The existence

of these nonsteady state patterns is the reason why we have

employed phase field instead of boundary-integral methods

for the solution of this problem. We have obtained also a

two-phase finger where the solid phase is the interior phase,

and the asymptotics far behind the tip of the pattern correspond

to a liquid-film-migration process. Second, we have studied the

solidification along the solid-liquid interface, which exhibits

the same liquid-film-migration asymptotic behavior.
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