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Solidification in syntectic and monotectic systems

C. Hiiter,! G. Boussinot,'2 E. A. Brener,? and R. Spatschf:kl
'Computational Materials Design Department, Max-Planck Institut fiir Eisenforschung, D-40237 Diisseldorf, Germany
2[nstitut fiir Festkorperforschung, Forschungszentrum Jiilich, D-52425 Jiilich, Germany
(Received 21 June 2012; published 28 August 2012)

We present theoretical studies of syntectic and monotectic solidification scenarios. Steady-state solidification
along the liquid-liquid interface in a syntectic system is considered by means of a boundary-integral technique
developed previously. We study the case of small asymmetry of the pattern and extract from the results the scaling
relations in terms of the undercooling and the asymmetry parameter. We also investigate monotectic solidification
using the phase-field method. We present two kinds of two-phase fingers, with the solid phase being either the
exterior phase or the interior phase, and the pattern corresponding to the growth along the solid-liquid interface.
We finally analyze the asymptotic shape of these new morphologies far behind their tip.
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I. INTRODUCTION

The occurrence of syntectic transitions is rather rare
in established large-scale industrial metallurgical processes.
Among the materials which exhibit a syntectic point we
mention P-Sn [1], which has relevance for lead-free solders [2],
or U-Pb [3]. In syntectic systems the three-phase equilibrium
consists of two liquid phases and one solid phase (see Fig. 1),
which is similar in this sense to the monotectic equilibrium.
However, unlike the monotectic system, the syntectic one
may exhibit a symmetric phase diagram which drastically
simplifies the solidification problem. In this paper we study
small deviations from this symmetric case in order to extract
scaling relations.

The physical processes involved below or above the
syntectic temperature include diffusion of solutal elements,
convection, and gravity effects. However, we are interested
here in the solidification along the liquid-liquid interface in
a general picture of three-phase equilibrium in binary alloys
(eutectic, peritectic, eutectoid, etc.), and we restrict our study
to solutal diffusion, which is assumed to take place only in
liquid phases.

We study the solidification problem in the syntectic system,
which is initiated by the syntectic reaction at the liquid-
liquid interface, the subsequent transformation occurring as
growth of the solid zone along the liquid-liquid interface [4].
Method of choice is the boundary-integral technique, using the
framework developed in Ref. [5] for the solidification of mono-
tectics. This boundary-integral formulation is designed for the
modeling of one liquid-liquid and two solid-liquid interfaces.
The solidification takes place along the liquid-liquid boundary,
and the solid phase appears as a finger-like shape; see Fig. 2.

In the syntectic system, the liquid-liquid mixture is the
metastable state below the syntectic temperature for the whole
range of concentrations of the syntectic plateau (see Fig. 1).
This is different from the monotectic phase diagram, where
below the monotectic temperature three possible metastable
states exist. In Ref. [5] we studied only the solidification along
the liquid-liquid interface. In this work, to complete the study
of the phase transition in the monotectic system, we present
patterns by the phase-field method which are obtained for the
two remaining possible metastable states, i.e., a single liquid
phase and a solid-liquid equilibrium.
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II. PHASE DIAGRAM, GEOMETRY, AND
BOUNDARY-INTEGRAL FORMULATION

A. Phase diagram

At the syntectic temperature the three-phase equilibrium
consists of two liquids L; and L, and one solid phase § with
concentrations cy,c;, and cg, respectively. The concentration
of the solid phase lies in the interval between the concentration
of the two liquids such that ¢; < ¢5 < ¢. Above the syntectic
temperature, the thermodynamic equilibrium consists of a
(L1 + L,) mixture. The liquid-liquid two-phase region spans
the whole range of concentrations between c¢; and c,. Below
the syntectic temperature the (L; + L) mixture is metastable
with concentration cj, in L; and ¢; in L, (see Fig. 1).
The phase transition is then controlled by the fluxes in L;
(whose concentration is c¢jg in equilibrium in with §) and
in L, (whose concentration is ¢ps in equilibrium in with S).
The concentrations in the solid S are then cg; in equilibrium
with L; and cg; in equilibrium with L;. One defines two
control parameters which are the driving forces for classical
dendritic solidification A; = (c12 — ¢15)/(cs — ¢1) and A, =
(cas — ca1)/(c2 — cs).

Below the syntectic temperature, three thermodynamic
equilibrium domains exist, depending on the concentration of
the alloy. If the concentration of the alloy is smaller than cg;,
then the (L; + S) mixture corresponds to the thermodynamic
equilibrium. If the concentration of the alloy is larger than cgp,
then the thermodynamic equilibrium is the (S + L) mixture.
If the concentration of the alloy lies in the interval between cg;
and cg», the thermodynamic equilibrium consists of a single
solid phase S.

B. Geometry

A finger-like solid phase § is growing along the L;/L,
metastable interface. We consider a two-dimensional pattern
with the triple junction as a single point (see Fig. 2).
Asymptotically far ahead of the triple junction, the L,/L;
interface is aligned with the direction y of the steady-state
velocity v. The triple junction does not have the same position
in the x direction as the asymptotic L;/L, interface, the
difference being denoted by a. Moreover, at the triple junction,
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FIG. 1. Phase diagram of the syntectic system.

there is an angle & between the L /L, interface and the growth
direction y. Far behind the triple junction, the solid-liquid
interfaces S/L; and S/L, match separate Ivantsov parabolas
[6] of radius p; and p,, respectively. The scaling laws observed
in the monotectic alloy [5] and in the eutectic two-phase
finger [7] (in a certain limit) suggest that the Ivantsov radius
is significantly smaller than the length scale governing the
curvatures at the triple junction. The main cancellations of
the different terms in the boundary-integral equations operate
on a smaller scale than the one needed to match the Ivantsov
parabola.

Since we consider an infinite space and since the metastable
state consists of a two-phase mixture, the global concentration
of the alloy does not enter into the problem. Our results thus do
not presuppose any position on the concentration axis on the
syntectic plateau (between c¢; and ¢;). However, different cases
exist depending on the equilibrium domain where the operating
point, i.e., the temperature and the global concentration of the
alloy, lies. The ultimate thermodynamic equilibrium is then
reached through solid bulk diffusion on scales much larger
than the tip region considered here.

FIG. 2. Close-up of the triple junction region for a typical
solution. The solid S grows with velocity v along the metastable
liquid-liquid (L,/L,) interface, which is aligned with v far ahead of
the triple junction. In the x direction, the triple junction is shifted by a
distance a from the asymptotic position of the liquid-liquid interface.
The latter adopts at the triple junction an angle § with the velocity
direction. The dots indicate the discretization of the interfaces; the
vertical asymptotics of the interface L,/L, are satisfied at larger
distances to the tip, outside the shown region.
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C. Boundary-integral formulation

Based on the geometry of the problem and the phase
diagram, we obtain the resulting formal presentation of the
system. Specifically, we consider steady-state solutions for
equal diffusion coefficients in the liquid phases and vanishing
diffusion in the growing solid phase. This type of hybrid model,
which we first introduced in Ref. [5], thus yields a one-sided
model representation [8] of the liquid-solid interfaces and a
symmetric model representation of the liquid-liquid interface
[9]. The symmetry of the liquid phases also yields equal
Gibbs-Thomson corrections to the equilibrium concentrations
c12 and ¢;;. Thus, the solution of the entire problem is reduced
to the solution of three coupled integro-differential equations
which represent the local equilibria at the different interfaces.
The first two of these equations, which are obtained for the
solid-liquid interfaces S/L; (i = 1,2), read

1 ¢i —cg

d
3 {A,» - —OK[ySi(x)l} = Ilx,ys()], (1)
C—C P1

and the third equation, for the L /L, interface, becomes

do
—EK[xlz()’)] = I[x12(y),y]. 2

The integral I[x,y] which determines the concentration at any
point of the space (x,y) reduces to an integration along the
three curves yg;(x), ys2(x),x12(y), representing the three inter-
faces S/L, S/L,, and L;/L,, respectively. We measure all
lengths in units of the Ivantsov radius p;. The capillary length
dy is assumed to be the same on all interfaces without loss of
generality, and the curvature is x[y(x)] = —(d*y/dx?)/[1 +
(dy/dx)*13. At the triple junction, the liquid-liquid interface
obeys dxj,/dy = — tan(8), and the self-selected angle §(>0 in
Fig. 2) sets the slopes, precisely dy;s/dx = 1/tan(¢ — &) and
dyys/dx = —1/tan(¢ + §), where ¢ > 0 is the contact angle
given by Young’s law.

Putting the origin of coordinates at the triple junction, the
integral reads

0

Cr —C
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d / / / /
- {AI - p—?fc[ym(x g (x,y;x ,y51)}

"y gy 2. 3)
0 dy

Ny
b

The first two terms come from the integration along the solid-
liquid interfaces, and we define the Green’s function

g(x,y;x',y") = exp[—pi(y — y)1Ko(p1m)
and its derivative

g'(x,y:x',y) =exp[—pi(y — y)]
x [Ko(pim) + fCx,y;x" . y)Ki(pin)],
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where p; = pjv/2D is the Péclet number linked to
p1. Ko(K;) is the modified Bessel function of zeroth
(first) order, n = /(x — x)> 4+ (y — ¥)%, and f(x,y;x',y) =
[(x = xdy'/dx" — (y — y)]/n.

The driving force A; is related to the Péclet number
pi = vp; /2D by the Ivantsov relation [6],

A; = /mp; exp(p;) erfe(/p;) 4
~Jrpi, A L1

In order to study the influence of the asymmetry and the
undercooling, we rewrite the two solidification driving forces
as

A =(1—-6€)A, )
Ay =14+ e)A, (6)

where we introduced the asymmetry parameter €, and the
undercooling A is proportional to the deviation from the syn-
tectic equilibrium temperature. One should note that the case
€ = 0 corresponds to a fully symmetric pattern where the
liquid-liquid interface is the axis of symmetry and the last
term on the right-hand side of Eq. (3) vanishes. In opposition
to the monotectic system, for which the topology of the phase
diagram necessarily implies a strong asymmetry of the pattern
(cf. Ref. [5]), we will focus in this work on small deviations
from the symmetric pattern, i.e., € < 1.

III. RESULTS: SYNTECTIC SYSTEM

The solution of the set of equations defined by Eqgs. (1) and
(2) includes the shapes of the interfaces as well as the values
of dy/p1, a/p1, and the angle §. The transition velocity then
is obtained via the Ivantsov relation [Eq. (4)], which implictly
gives the Péclet number p; = vp; /2D for given undercooling.
We choose the opening angle ¢ = /3 and the miscibility
gap ratios (cz —cg)/(c2 —c1) = 1/2, (c1 —cs)/(ca —c1) =
—1/2, which is appropriate for an intuitive definition of the
asymmetry parameter. Specifically, as mentioned above, the
growth direction becomes the axis of symmetry of the pattern
as € — 0. A first impression of the results is obtained by the
close-up of an exemplary shape in Fig. 2. At the triple junction,
the length scale which describes the pattern is the inverse of
the curvature close to the triple junction, which we define as
Xi = (k[ysi(x)]lx—0)~". In Fig. 3(a) we present the variation
of A; A /dy with respect to €, for A = 0.15 and A = 0.1. Due
to small numerical inaccuracies in the discretization of the
integrals (we used about 150 grid points for the interface
discretization, which are distributed nonuniformly as shown
in Fig. 2), the values of XA /dy and A, A /dy do not exactly
coincide in the limit e — 0; In calculations valid only ate = 0,
this discrepancy is reduced, and the common value LA /d is
approximately the average of A;A/dy at € = 0. One clearly
sees that AA/dy and A, A /dy have a linear variation with
opposite slopes of about +3.5. In Fig. 3(b) we plot AA/dy
versus A for € = 0, with A = A;(e = 0). We clearly see that in
the limit A — 0, LA /d is constant. The information provided
by Figs. 3(a) and 3(b) suggests that the inverse of the curvatures
of the solid-liquid interfaces at the triple junction A;(A,e€)
obeys a scaling law given by A; /A — 1 ~ € with A/dy ~ 1/A
in the regimes A < 1, < 1.
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FIG. 3. (a) Linear dependence of ;A /d, with respect to the
asymmetry parameter €. For A = 0.15 crosses indicate i = 1, filled
circles i = 2, for A = 0.1, open circles i = 1, and boxes i = 2. The
numerical inaccuracy explained above briefly is responsible for the
slight difference between A; A /dy and A, A /dy when € — 0. (b) Plot
of AA /d, versus driving force A for € = 0, where X is the common
value of A and X,.

Concerning the rotation angle §, we present in Fig. 4 its
variation with respect to € for A = 0.15 and A = 0.10. We
clearly see that § increases linearly with €, at the same time
being independent of A.

Concerning the asymptotic lateral shift of the liquid-liquid
interface a as y — 00, we present the quantity aA /dy versus
€ in Fig. 5 for A =0.15 and A = 0.10. The figure clearly
suggests that the scaling of a is a/dy ~ €/A in the regime
AL lek .

The remaining unknown is the velocity v, which is related to
p; by the Ivantsov relation [Eq. (4)]. In Fig. 6 where vdy/2D
is given versus € for A = 0.15, we see that the velocity is
independent of € in the range of investigated values of €. One
should note that the absence of a linear dependence of the
velocity on € can be understood by symmetry; i.e., changing
the sign of € should not change the value of the velocity.
Therefore, the first variation of v is of order €2, which is weak
in the range of € presented in Fig. 6.

0.25

0.2

0.1 | X

0.05

0 0.025 0.05
€

0.075

FIG. 4. The rotation angle of the triple junction §. The crosses
correspond to A = (.15, the boxes to A = 0.1.
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FIG. 5. The ratio aA /dj as function of the asymmetry parameter
€. The crosses correspond to A = 0.15 and the boxes to A = 0.1.

The dependence of v on A is illustrated in Fig. 7 through
the plot of vAZ/2dyD versus A for € = 0. We recall that A
is the common value of A; and A, for € = 0. We see that
vA2/2dyD is independent of A for A « 1. The invariance
of this quantity reminds one of the case of classical dendritic
[8] or eutectic growth [7,10]. Consequently, we obtain the
velocity scaling vdy/2D ~ A? in the regime A < 1,6 < 1.
Since vdy/2D = pido/p1 ~ Aldo/pr = (1 — €)*A%dy/py in
the regime A « 1, we have vdy/2D ~ (1 — 26)A2d0/,01 and
therefore dy/p; ~ 1 + 2¢ in the regime A < l,e < 1. By
the same arguments, we have dy/p> ~ 1 — 2¢. This means
that p;/A — 0 for A — 0, demonstrating the existence of
intermediate asymptotics as previously mentioned in Ref. [5]
and in Sec. II B. However, the intermediate asymptotics are
not the focus of this article.

We summarize the obtained results for the syntectic
solidification by the scaling laws for the regime A < 1,6 < 1:

A A 1 a € _vdy

__1/'\.46’ ~ — ~ —’\’AZ.

) do AN dy A D
@)

i

IV. RESULTS: MONOTECTIC SYSTEM

We present now in this part a phase-field study of the
isothermal solidification in the monotectic system that com-
plements our previous study [5]. We adapted a phase-field

0.01
[a)]
[aV)
o L 1
-g 4 +
+ 4+ + o+ 4+ + +
0.009 : .
0 0.025 0.05 0.075

FIG. 6. The dimensionless velocity vdy/2D versus € for A = 0.15.
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FIG. 7. The invariant vA?/2dyD of the syntectic solidification
versus A for e = 0.

model initially developed for the solidification of eutectic or
peritectic alloys [11] in order to account for diffusion in the
two liquid phases. In Fig. 8 the monotectic phase diagram
is shown. As mentioned in the introduction, the liquid-liquid
equilibrium does not span the whole monotectic plateau in
the monotectic system. One has three possible metastable
states below the monotectic temperature (which are stable
above the monotectic temperature) depending on the global
concentration of the alloy: a (L; 4+ L) liquid-liquid mixture,
a single L; liquid phase, and a (S + L) solid-liquid mixture.
We present in the following phase-field calculations of the
phase transitions occurring for a single metastable L, phase
and a metastable (S + L) mixture.

A. Metastable liquid phase L;

When the global concentration of the alloy is in the
neighborhood of the monotectic point, the metastable state
consists of a single L; phase. In this region of the phase
diagram, the growth of the solid S and the liquid L, may
proceed through a two-phase finger growth. The latter has
been described recently [7] in the eutectic system. The
pattern then consists of one growing solid phase exhibiting
Ivantsov asymptotics (exterior phase) surrounding the other
solid phase (interior phase). Since diffusion is neglected in the
solid phases, the interior phase is a straight lamella parallel

T

C21 C28
1 1

cg cy Co c

FIG. 8. Monotectic phase diagram. The metastable continuation
of the boundaries of the (L, 4+ L,), and the (S 4+ L;) equilibrium
domains are shown as dashed lines.
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to the direction of growth. In the monotectic system, the
two-phase finger can be of two kinds. The exterior phase
can be the solid phase § or the liquid phase L. In the
present section, we present phase-field simulations of the two
patterns.

The fluxes in the neighborhood of the triple junction are
described by two dimensionless parameters A} = (cj5 — ¢12)/
(c1 —cs) and Ay = (ca5 — ¢21)/(c2 — cs) (see Fig. 8). De-
pending on which phase is the exterior phase, the global
concentration of the alloy ¢, enters into the expression for a di-
mensionless solidification driving force, written in the standard
form for the classical dendrite as Ago = (c15 — C0)/(c1 — C5)
when the exterior phase is S and Ago = (c12 — Cx0)/(c1 — 2)
when the exterior phase is L.

1. Two-phase finger with a solid exterior phase

In this case, the pattern is close to the one obtained in
eutectic systems, and the exterior solid phase exhibits Ivantsov
asymptotics. In Fig. 9(a) we present the corresponding pattern,
where the growth direction is indicated by the arrow. The ratio
of miscibility gaps at equilibrium is (c; — cs)/(c2 — ¢1) =
0.86. The solidification driving forces are A; = 0.252 and
A, = 0.0540 (see Fig. 8). The concentration c, of the liquid
L far ahead of the tip of the pattern is such that AS = 0.225
and AL ~ A5 /10. The selected pattern with the solid phase
as the exterior phase thus corresponds to the largest driving
force A3 . Here no flux exists in the liquid L, far behind
the tip, and the S/L, interface is parallel to the growth
direction. The lateral position (perpendicular to the growth
direction) of the S/L, interface with respect to the axis of
symmetry of the pattern is a = 18.2d), and the dimensionless
velocity is vdy/2D = 4.125 x 1073, Therefore the quantity
a’v/2D ~ 1.37 is of order unity.

In Fig. 9(b) we present a phase-field simulation of an
oscillating two-phase finger. Here we have (¢; — cg)/(c2 —
c1) = 0.46, the driving forces are A} = 0.088, A, = 0.1A4,
and A3, = 0.065 (AL =~ A5 /6). The total width 2a of the L,
phase perpendicular to the growth direction oscillates between
60dy and 105dy, and the dimensionless velocity averaged
over one period is vdy/2D = 2.18 x 1074, Thus the quantity
a’v /2D oscillates between 0.2 and 0.66 and is of order unity
again. This oscillating pattern reminds one of the oscillatory

I L, I L,

(a) (b)

FIG. 9. (Color online) Two-phase finger with the solid (black)
surrounding the liquid L, (green/gray) in (a) steady state and (b) an
oscillatory regime. The arrow indicates the growth direction.
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regime in lamellar growth in eutectics (we actually obtained the
same kind of oscillatory regime previously during the growth
of eutectic two-phase fingers in the framework of phase-field
simulations) [12,13]. However, one should not exclude the
possibility of an extremely slow decay of the oscillations
towards a steady state. We observed at least ten periods without
damping of the oscillations of the velocity. One should also
not exclude an artificial stabilization of the oscillatory regime
when the interface width of the phase fields [11] (here about
0.2 a) is not well separated from the length scales of the pattern.

2. Two-phase finger with liquid exterior phase

In this second case, the liquid L, surrounds the solid phase
S, and far behind the tip we have a L,-film-migration process
(LFM) [14,15], i.e., the combined motion of two parabolic
fronts enclosing the L, phase. In Fig. 10 we present this pattern.
It was obtained when (c; — cs)/(c; — ¢1) =2, Ay = 0.105,
A, = 0.0467, and for cs = ;. Then we have AL = 0.167
and A3 ~ AL /8. Therefore, the obtained pattern with the
liquid phase as exterior phase is the one that corresponds to
the largest driving force AL . The dimensionless velocity is
vdy/2D = 1.75 x 1073, and the lateral position of the triple
junction with respect to the axis of symmetry of the finger
is a = 16.5d,. Therefore the quantity a>v/2D = 0.48 is here
also of order unity.

Let us make a comment on the LFM process that occurs
here. In Ref. [14] the LFM has been theoretically studied, and
the Péclet numbers Py = vRg/2D and P, = vR,/2D of the
two parabolic fronts S/L, and L,/L, respectively, of radius
Rs and R;, have been determined depending on the control
parameters A, and Ago. In the limit Pg, P, < 1, one has

Ar)2

Pg = ,
A=1+4+x+V/x*>+20 -y
Py = Ps[h+ x + Vx> +200 — Dx 1%, 9)

T L,

®)

FIG. 10. (Color online) Two-phase finger growth with the liquid
L, (green/gray) surrounding the solid S (black). Far behind the tip,
one has a L,-film migration process.
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FIG. 11. (Color online) Growth along the S/L; interface. Far
behind the tip, one has a L,-film migration process.

where A = (c2 —¢s)/(c2 —c1) > 1 and x = (AL)?/(w A).
Here . = 3 and x = 0.190. Therefore the ratio P,/ Pg >~ 10is
large, and a quantitative comparison with the theory is difficult.
More precisely, the size of the simulated portion of the pattern
does not allow for an accurate determination of the curvature
of the /L, front.

It is interesting to note that x, which tunes the ratio
P,/ Pg, has the same form as the quantity that determines
the ratio between the width of the interior lamella and the
Ivantsov radius for the growth of the two-phase finger in
the eutectic system [7]. In the case x =0, i.e., Aéo =0, one
has Pg = A,/(2) — 2) and P,/ Pg = A2. This result has been
presented for the LFM process above the peritectic temperature
in Ref. [16]. In the other limit x — oo, P»/Ps — 4x2, and
one recovers the Ivantsov relation for the L /L, interface; i.e.,
P, >~ (AL ))? /7 becomes independent of A,.

B. Metastable solid-liquid mixture (S + L)

When a (S + L) mixture is brought into a metastable
state below the monotectic temperature, the transformation
consists of the growth of the solid S and the liquid L, along
the metastable S/L; interface. In Fig. 11 we present the
corresponding pattern. The S/L; interface is aligned with the
direction of growth far ahead of the triple junction and adopts
an angle in its neighborhood. Far behind the triple junction,
one has again a L,-film migration process.
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This pattern is close to the one described in Ref. [17] for
the melting of a peritectic alloy along the solid-solid interface.
However, here a lateral shift a (perpendicular to the growth
direction) of the triple junction with respect to the asymptotic
position of the metastable interface exists contrary to the case
where the metastable interface separates two solid phases.
The miscibility gaps are such that (¢; — cg)/(c; —¢1) =2,
and the driving forces are A} = 0.0524 and A, = 0.0233.
The concentration in L; far ahead of the triple junction is
Cso = C15, and thus Ago = Aq(c1 —cs)/(ca —c1) = 0.105
and AS, ~ 0. Hence we have x = 0.150 for the description of
the LFM process. Again . = 3, and the size of the simulated
portion of the pattern does not allow one to calculate
accurately the ratio P,/ Ps.

V. SUMMARY

In this paper we have presented a study of the solidification
in the syntectic system applying a boundary integral technique
developed in our previous work [5] and a study of different
solidification scenarios in monotectic systems using the phase-
field method.

In the syntectic system we have focused on small deviations
from the symmetric pattern, corresponding to small values
€ < 1 of an asymmetry parameter €. We have extracted from
our boundary integral calculations the scaling relations of the
relevant length scales, the rotation angle of the triple junction
38, and the growth velocity, which are summarized in Eq. (7).

For the monotectic system we have presented phase-field
simulations of scenarios of solidification complementary to
the solidification along the liquid-liquid interface presented
in Ref. [5]. First, we have studied the two-phase fingers
growing at the expense of a single metastable liquid phase. We
have obtained a two-phase finger with the solid phase as the
exterior phase which is close to the eutectic finger presented
in Ref. [7], and in addition we have shown the possibility
of oscillatory regimes of this mode of growth. The existence
of these nonsteady state patterns is the reason why we have
employed phase field instead of boundary-integral methods
for the solution of this problem. We have obtained also a
two-phase finger where the solid phase is the interior phase,
and the asymptotics far behind the tip of the pattern correspond
to aliquid-film-migration process. Second, we have studied the
solidification along the solid-liquid interface, which exhibits
the same liquid-film-migration asymptotic behavior.
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