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Solidification in syntectic and monotectic systems
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We present theoretical studies of syntectic and monotectic solidification scenarios. Steady-state solidification
along the liquid-liquid interface in a syntectic system is considered by means of a boundary-integral technique
developed previously. We study the case of small asymmetry of the pattern and extract from the results the scaling
relations in terms of the undercooling and the asymmetry parameter. We also investigate monotectic solidification
using the phase-field method. We present two kinds of two-phase fingers, with the solid phase being either the
exterior phase or the interior phase, and the pattern corresponding to the growth along the solid-liquid interface.
We finally analyze the asymptotic shape of these new morphologies far behind their tip.
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I. INTRODUCTION

The occurrence of syntectic transitions is rather rare
in established large-scale industrial metallurgical processes.
Among the materials which exhibit a syntectic point we
mention P-Sn [1], which has relevance for lead-free solders [2],
or U-Pb [3]. In syntectic systems the three-phase equilibrium
consists of two liquid phases and one solid phase (see Fig. 1),
which is similar in this sense to the monotectic equilibrium.
However, unlike the monotectic system, the syntectic one
may exhibit a symmetric phase diagram which drastically
simplifies the solidification problem. In this paper we study
small deviations from this symmetric case in order to extract
scaling relations.

The physical processes involved below or above the
syntectic temperature include diffusion of solutal elements,
convection, and gravity effects. However, we are interested
here in the solidification along the liquid-liquid interface in
a general picture of three-phase equilibrium in binary alloys
(eutectic, peritectic, eutectoid, etc.), and we restrict our study
to solutal diffusion, which is assumed to take place only in
liquid phases.

We study the solidification problem in the syntectic system,
which is initiated by the syntectic reaction at the liquid-
liquid interface, the subsequent transformation occurring as
growth of the solid zone along the liquid-liquid interface [4].
Method of choice is the boundary-integral technique, using the
framework developed in Ref. [5] for the solidification of mono-
tectics. This boundary-integral formulation is designed for the
modeling of one liquid-liquid and two solid-liquid interfaces.
The solidification takes place along the liquid-liquid boundary,
and the solid phase appears as a finger-like shape; see Fig. 2.

In the syntectic system, the liquid-liquid mixture is the
metastable state below the syntectic temperature for the whole
range of concentrations of the syntectic plateau (see Fig. 1).
This is different from the monotectic phase diagram, where
below the monotectic temperature three possible metastable
states exist. In Ref. [5] we studied only the solidification along
the liquid-liquid interface. In this work, to complete the study
of the phase transition in the monotectic system, we present
patterns by the phase-field method which are obtained for the
two remaining possible metastable states, i.e., a single liquid
phase and a solid-liquid equilibrium.

II. PHASE DIAGRAM, GEOMETRY, AND
BOUNDARY-INTEGRAL FORMULATION

A. Phase diagram

At the syntectic temperature the three-phase equilibrium
consists of two liquids L1 and L2 and one solid phase S with
concentrations c1,c2, and cS , respectively. The concentration
of the solid phase lies in the interval between the concentration
of the two liquids such that c1 < cS < c2. Above the syntectic
temperature, the thermodynamic equilibrium consists of a
(L1 + L2) mixture. The liquid-liquid two-phase region spans
the whole range of concentrations between c1 and c2. Below
the syntectic temperature the (L1 + L2) mixture is metastable
with concentration c12 in L1 and c21 in L2 (see Fig. 1).
The phase transition is then controlled by the fluxes in L1

(whose concentration is c1S in equilibrium in with S) and
in L2 (whose concentration is c2S in equilibrium in with S).
The concentrations in the solid S are then cS1 in equilibrium
with L1 and cS2 in equilibrium with L2. One defines two
control parameters which are the driving forces for classical
dendritic solidification �1 = (c12 − c1S)/(cS − c1) and �2 =
(c2S − c21)/(c2 − cS).

Below the syntectic temperature, three thermodynamic
equilibrium domains exist, depending on the concentration of
the alloy. If the concentration of the alloy is smaller than cS1,
then the (L1 + S) mixture corresponds to the thermodynamic
equilibrium. If the concentration of the alloy is larger than cS2,
then the thermodynamic equilibrium is the (S + L2) mixture.
If the concentration of the alloy lies in the interval between cS1

and cS2, the thermodynamic equilibrium consists of a single
solid phase S.

B. Geometry

A finger-like solid phase S is growing along the L1/L2

metastable interface. We consider a two-dimensional pattern
with the triple junction as a single point (see Fig. 2).
Asymptotically far ahead of the triple junction, the L1/L2

interface is aligned with the direction y of the steady-state
velocity υ. The triple junction does not have the same position
in the x direction as the asymptotic L1/L2 interface, the
difference being denoted by a. Moreover, at the triple junction,
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FIG. 1. Phase diagram of the syntectic system.

there is an angle δ between the L1/L2 interface and the growth
direction y. Far behind the triple junction, the solid-liquid
interfaces S/L1 and S/L2 match separate Ivantsov parabolas
[6] of radius ρ1 and ρ2, respectively. The scaling laws observed
in the monotectic alloy [5] and in the eutectic two-phase
finger [7] (in a certain limit) suggest that the Ivantsov radius
is significantly smaller than the length scale governing the
curvatures at the triple junction. The main cancellations of
the different terms in the boundary-integral equations operate
on a smaller scale than the one needed to match the Ivantsov
parabola.

Since we consider an infinite space and since the metastable
state consists of a two-phase mixture, the global concentration
of the alloy does not enter into the problem. Our results thus do
not presuppose any position on the concentration axis on the
syntectic plateau (between c1 and c2). However, different cases
exist depending on the equilibrium domain where the operating
point, i.e., the temperature and the global concentration of the
alloy, lies. The ultimate thermodynamic equilibrium is then
reached through solid bulk diffusion on scales much larger
than the tip region considered here.

FIG. 2. Close-up of the triple junction region for a typical
solution. The solid S grows with velocity υ along the metastable
liquid-liquid (L1/L2) interface, which is aligned with υ far ahead of
the triple junction. In the x direction, the triple junction is shifted by a
distance a from the asymptotic position of the liquid-liquid interface.
The latter adopts at the triple junction an angle δ with the velocity
direction. The dots indicate the discretization of the interfaces; the
vertical asymptotics of the interface L1/L2 are satisfied at larger
distances to the tip, outside the shown region.

C. Boundary-integral formulation

Based on the geometry of the problem and the phase
diagram, we obtain the resulting formal presentation of the
system. Specifically, we consider steady-state solutions for
equal diffusion coefficients in the liquid phases and vanishing
diffusion in the growing solid phase. This type of hybrid model,
which we first introduced in Ref. [5], thus yields a one-sided
model representation [8] of the liquid-solid interfaces and a
symmetric model representation of the liquid-liquid interface
[9]. The symmetry of the liquid phases also yields equal
Gibbs-Thomson corrections to the equilibrium concentrations
c12 and c21. Thus, the solution of the entire problem is reduced
to the solution of three coupled integro-differential equations
which represent the local equilibria at the different interfaces.
The first two of these equations, which are obtained for the
solid-liquid interfaces S/Li (i = 1,2), read

1

2

ci − cS

c2 − c1

{
�i − d0

ρ1
κ[ySi(x)]

}
= I [x,ySi(x)], (1)

and the third equation, for the L1/L2 interface, becomes

−d0

ρ1
κ[x12(y)] = I [x12(y),y]. (2)

The integral I [x,y] which determines the concentration at any
point of the space (x,y) reduces to an integration along the
three curves yS1(x),yS2(x),x12(y), representing the three inter-
faces S/L1, S/L2, and L1/L2, respectively. We measure all
lengths in units of the Ivantsov radius ρ1. The capillary length
d0 is assumed to be the same on all interfaces without loss of
generality, and the curvature is κ[y(x)] = −(d2y/dx2)/[1 +
(dy/dx)2]3/2. At the triple junction, the liquid-liquid interface
obeys dx12/dy = − tan(δ), and the self-selected angle δ(>0 in
Fig. 2) sets the slopes, precisely dy1S/dx = 1/ tan(φ − δ) and
dy2S/dx = −1/ tan(φ + δ), where φ > 0 is the contact angle
given by Young’s law.

Putting the origin of coordinates at the triple junction, the
integral reads

I [x,y] = p1

2π

c2 − cS

c2 − c1

∫ 0

−∞
dx ′

[
2g(x,y; x ′,y ′

S2)

−
{
�2 − d0

ρ1
κ[yS2(x ′)]

}
g′(x,y; x ′,y ′

S2)

]

+ p1

2π

c1 − cS

c2 − c1

∫ ∞

0
dx ′

[
2g(x,y; x ′,y ′

S1)

−
{
�1 − d0

ρ1
κ[yS1(x ′)]

}
g′(x,y; x ′,y ′

S1)

]

+ p1

π

∫ ∞

0
dy ′g(x,y; x ′

12,y
′)

dx ′
12

dy ′ . (3)

The first two terms come from the integration along the solid-
liquid interfaces, and we define the Green’s function

g(x,y; x ′,y ′) = exp[−p1(y − y ′)]K0(p1η)

and its derivative

g′(x,y; x ′,y ′) = exp[−p1(y − y ′)]
× [K0(p1η) + f (x,y; x ′,y ′)K1(p1η)],
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where p1 = ρ1υ/2D is the Péclet number linked to
ρ1. K0(K1) is the modified Bessel function of zeroth
(first) order, η =

√
(x − x ′)2 + (y − y ′)2, and f (x,y; x ′,y ′) =

[(x − x ′)dy ′/dx ′ − (y − y ′)]/η.
The driving force �i is related to the Péclet number

pi = υρi/2D by the Ivantsov relation [6],

�i = √
πpi exp(pi) erfc(

√
pi) (4)

∼ √
πpi, �i � 1.

In order to study the influence of the asymmetry and the
undercooling, we rewrite the two solidification driving forces
as

�1 = (1 − ε)�, (5)

�2 = (1 + ε)�, (6)

where we introduced the asymmetry parameter ε, and the
undercooling � is proportional to the deviation from the syn-
tectic equilibrium temperature. One should note that the case
ε = 0 corresponds to a fully symmetric pattern where the
liquid-liquid interface is the axis of symmetry and the last
term on the right-hand side of Eq. (3) vanishes. In opposition
to the monotectic system, for which the topology of the phase
diagram necessarily implies a strong asymmetry of the pattern
(cf. Ref. [5]), we will focus in this work on small deviations
from the symmetric pattern, i.e., ε � 1.

III. RESULTS: SYNTECTIC SYSTEM

The solution of the set of equations defined by Eqs. (1) and
(2) includes the shapes of the interfaces as well as the values
of d0/ρ1, a/ρ1, and the angle δ. The transition velocity then
is obtained via the Ivantsov relation [Eq. (4)], which implictly
gives the Péclet number pi = υρi/2D for given undercooling.
We choose the opening angle φ = π/3 and the miscibility
gap ratios (c2 − cS)/(c2 − c1) = 1/2, (c1 − cS)/(c2 − c1) =
−1/2, which is appropriate for an intuitive definition of the
asymmetry parameter. Specifically, as mentioned above, the
growth direction becomes the axis of symmetry of the pattern
as ε → 0. A first impression of the results is obtained by the
close-up of an exemplary shape in Fig. 2. At the triple junction,
the length scale which describes the pattern is the inverse of
the curvature close to the triple junction, which we define as
λi = (κ[ySi(x)]|x→0)−1. In Fig. 3(a) we present the variation
of λi�/d0 with respect to ε, for � = 0.15 and � = 0.1. Due
to small numerical inaccuracies in the discretization of the
integrals (we used about 150 grid points for the interface
discretization, which are distributed nonuniformly as shown
in Fig. 2), the values of λ1�/d0 and λ2�/d0 do not exactly
coincide in the limit ε → 0; In calculations valid only at ε = 0,
this discrepancy is reduced, and the common value λ�/d0 is
approximately the average of λi�/d0 at ε = 0. One clearly
sees that λ1�/d0 and λ2�/d0 have a linear variation with
opposite slopes of about ±3.5. In Fig. 3(b) we plot λ�/d0

versus � for ε = 0, with λ = λi(ε = 0). We clearly see that in
the limit � → 0, λ�/d0 is constant. The information provided
by Figs. 3(a) and 3(b) suggests that the inverse of the curvatures
of the solid-liquid interfaces at the triple junction λi(�,ε)
obeys a scaling law given by λi/λ − 1 ∼ ε with λ/d0 ∼ 1/�

in the regimes � � 1,ε � 1.

1

(b)  1.1 

0  0.25  0.5  0.75

 0.8

 (a)   1.4

0  0.025  0.05  0.075

λ i Δ /d 0

λ Δ /d 0

ε

Δ

FIG. 3. (a) Linear dependence of λi�/d0 with respect to the
asymmetry parameter ε. For � = 0.15 crosses indicate i = 1, filled
circles i = 2, for � = 0.1, open circles i = 1, and boxes i = 2. The
numerical inaccuracy explained above briefly is responsible for the
slight difference between λ1�/d0 and λ2�/d0 when ε → 0. (b) Plot
of λ�/d0 versus driving force � for ε = 0, where λ is the common
value of λ1 and λ2.

Concerning the rotation angle δ, we present in Fig. 4 its
variation with respect to ε for � = 0.15 and � = 0.10. We
clearly see that δ increases linearly with ε, at the same time
being independent of �.

Concerning the asymptotic lateral shift of the liquid-liquid
interface a as y → ∞, we present the quantity a�/d0 versus
ε in Fig. 5 for � = 0.15 and � = 0.10. The figure clearly
suggests that the scaling of a is a/d0 ∼ ε/� in the regime
� � 1,ε � 1.

The remaining unknown is the velocity υ, which is related to
ρi by the Ivantsov relation [Eq. (4)]. In Fig. 6 where υd0/2D

is given versus ε for � = 0.15, we see that the velocity is
independent of ε in the range of investigated values of ε. One
should note that the absence of a linear dependence of the
velocity on ε can be understood by symmetry; i.e., changing
the sign of ε should not change the value of the velocity.
Therefore, the first variation of υ is of order ε2, which is weak
in the range of ε presented in Fig. 6.

0

 0.05

 0.1

 0.15

 0.2

 0.25

0  0.025  0.05  0.075

δ

ε

FIG. 4. The rotation angle of the triple junction δ. The crosses
correspond to � = 0.15, the boxes to � = 0.1.
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FIG. 5. The ratio a�/d0 as function of the asymmetry parameter
ε. The crosses correspond to � = 0.15 and the boxes to � = 0.1.

The dependence of υ on � is illustrated in Fig. 7 through
the plot of υλ2/2d0D versus � for ε = 0. We recall that λ

is the common value of λ1 and λ2 for ε = 0. We see that
υλ2/2d0D is independent of � for � � 1. The invariance
of this quantity reminds one of the case of classical dendritic
[8] or eutectic growth [7,10]. Consequently, we obtain the
velocity scaling υd0/2D ∼ �2 in the regime � � 1,ε � 1.
Since υd0/2D = p1d0/ρ1 ∼ �2

1d0/ρ1 = (1 − ε)2�2d0/ρ1 in
the regime � � 1, we have υd0/2D ∼ (1 − 2ε)�2d0/ρ1 and
therefore d0/ρ1 ∼ 1 + 2ε in the regime � � 1,ε � 1. By
the same arguments, we have d0/ρ2 ∼ 1 − 2ε. This means
that ρi/λ → 0 for � → 0, demonstrating the existence of
intermediate asymptotics as previously mentioned in Ref. [5]
and in Sec. II B. However, the intermediate asymptotics are
not the focus of this article.

We summarize the obtained results for the syntectic
solidification by the scaling laws for the regime � � 1,ε � 1:

λi

λ
− 1 ∼ ε;

λ

d0
∼ 1

�
;

a

d0
∼ ε

�
; δ ∼ ε;

υd0

D
∼ �2.

(7)

IV. RESULTS: MONOTECTIC SYSTEM

We present now in this part a phase-field study of the
isothermal solidification in the monotectic system that com-
plements our previous study [5]. We adapted a phase-field

 0.009

 0.01 

0  0.025  0.05  0.075

ε

υ
d 0

/ 2
 D

FIG. 6. The dimensionless velocity υd0/2D versus ε for � = 0.15.
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υλ
2

/2
d

0
D

Δ

FIG. 7. The invariant υλ2/2d0D of the syntectic solidification
versus � for ε = 0.

model initially developed for the solidification of eutectic or
peritectic alloys [11] in order to account for diffusion in the
two liquid phases. In Fig. 8 the monotectic phase diagram
is shown. As mentioned in the introduction, the liquid-liquid
equilibrium does not span the whole monotectic plateau in
the monotectic system. One has three possible metastable
states below the monotectic temperature (which are stable
above the monotectic temperature) depending on the global
concentration of the alloy: a (L1 + L2) liquid-liquid mixture,
a single L1 liquid phase, and a (S + L1) solid-liquid mixture.
We present in the following phase-field calculations of the
phase transitions occurring for a single metastable L1 phase
and a metastable (S + L1) mixture.

A. Metastable liquid phase L1

When the global concentration of the alloy is in the
neighborhood of the monotectic point, the metastable state
consists of a single L1 phase. In this region of the phase
diagram, the growth of the solid S and the liquid L2 may
proceed through a two-phase finger growth. The latter has
been described recently [7] in the eutectic system. The
pattern then consists of one growing solid phase exhibiting
Ivantsov asymptotics (exterior phase) surrounding the other
solid phase (interior phase). Since diffusion is neglected in the
solid phases, the interior phase is a straight lamella parallel

c

T

S

L1 L2

c21 c2Sc1Sc12

cS c1 c2

S + L1

L1 + L2

S + L2

FIG. 8. Monotectic phase diagram. The metastable continuation
of the boundaries of the (L1 + L2), and the (S + L1) equilibrium
domains are shown as dashed lines.
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to the direction of growth. In the monotectic system, the
two-phase finger can be of two kinds. The exterior phase
can be the solid phase S or the liquid phase L2. In the
present section, we present phase-field simulations of the two
patterns.

The fluxes in the neighborhood of the triple junction are
described by two dimensionless parameters �1 = (c1S − c12)/
(c1 − cS) and �2 = (c2S − c21)/(c2 − cS) (see Fig. 8). De-
pending on which phase is the exterior phase, the global
concentration of the alloy c∞ enters into the expression for a di-
mensionless solidification driving force, written in the standard
form for the classical dendrite as �S

∞ = (c1S − c∞)/(c1 − cS)
when the exterior phase is S and �L

∞ = (c12 − c∞)/(c1 − c2)
when the exterior phase is L2.

1. Two-phase finger with a solid exterior phase

In this case, the pattern is close to the one obtained in
eutectic systems, and the exterior solid phase exhibits Ivantsov
asymptotics. In Fig. 9(a) we present the corresponding pattern,
where the growth direction is indicated by the arrow. The ratio
of miscibility gaps at equilibrium is (c1 − cS)/(c2 − c1) =
0.86. The solidification driving forces are �1 = 0.252 and
�2 = 0.0540 (see Fig. 8). The concentration c∞ of the liquid
L1 far ahead of the tip of the pattern is such that �S

∞ = 0.225
and �L

∞ � �S
∞/10. The selected pattern with the solid phase

as the exterior phase thus corresponds to the largest driving
force �S

∞. Here no flux exists in the liquid L2 far behind
the tip, and the S/L2 interface is parallel to the growth
direction. The lateral position (perpendicular to the growth
direction) of the S/L2 interface with respect to the axis of
symmetry of the pattern is a = 18.2d0, and the dimensionless
velocity is υd0/2D = 4.125 × 10−3. Therefore the quantity
a2υ/2D � 1.37 is of order unity.

In Fig. 9(b) we present a phase-field simulation of an
oscillating two-phase finger. Here we have (c1 − cS)/(c2 −
c1) = 0.46, the driving forces are �1 = 0.088, �2 = 0.1�1,
and �S

∞ = 0.065 (�L
∞ � �S

∞/6). The total width 2a of the L2

phase perpendicular to the growth direction oscillates between
60d0 and 105d0, and the dimensionless velocity averaged
over one period is υd0/2D = 2.18 × 10−4. Thus the quantity
a2υ/2D oscillates between 0.2 and 0.66 and is of order unity
again. This oscillating pattern reminds one of the oscillatory

S

L 2

L 1

L 2

S

L 1

(b)
2a

(a)

FIG. 9. (Color online) Two-phase finger with the solid (black)
surrounding the liquid L2 (green/gray) in (a) steady state and (b) an
oscillatory regime. The arrow indicates the growth direction.

regime in lamellar growth in eutectics (we actually obtained the
same kind of oscillatory regime previously during the growth
of eutectic two-phase fingers in the framework of phase-field
simulations) [12,13]. However, one should not exclude the
possibility of an extremely slow decay of the oscillations
towards a steady state. We observed at least ten periods without
damping of the oscillations of the velocity. One should also
not exclude an artificial stabilization of the oscillatory regime
when the interface width of the phase fields [11] (here about
0.2 a) is not well separated from the length scales of the pattern.

2. Two-phase finger with liquid exterior phase

In this second case, the liquid L2 surrounds the solid phase
S, and far behind the tip we have a L2-film-migration process
(LFM) [14,15], i.e., the combined motion of two parabolic
fronts enclosing the L2 phase. In Fig. 10 we present this pattern.
It was obtained when (c1 − cS)/(c2 − c1) = 2, �1 = 0.105,
�2 = 0.0467, and for c∞ = c1. Then we have �L

∞ = 0.167
and �S

∞ � �L
∞/8. Therefore, the obtained pattern with the

liquid phase as exterior phase is the one that corresponds to
the largest driving force �L

∞. The dimensionless velocity is
υd0/2D = 1.75 × 10−3, and the lateral position of the triple
junction with respect to the axis of symmetry of the finger
is a = 16.5d0. Therefore the quantity a2υ/2D = 0.48 is here
also of order unity.

Let us make a comment on the LFM process that occurs
here. In Ref. [14] the LFM has been theoretically studied, and
the Péclet numbers PS = υRS/2D and P2 = υR2/2D of the
two parabolic fronts S/L2 and L2/L1, respectively, of radius
RS and R2, have been determined depending on the control
parameters �2 and �L

∞. In the limit PS,P2 � 1, one has

PS = �2/2

λ − 1 + χ +
√

χ2 + 2(λ − 1)χ
, (8)

P2 = PS[λ + χ +
√

χ2 + 2(λ − 1)χ ]2, (9)

S

L2

L1

2a

FIG. 10. (Color online) Two-phase finger growth with the liquid
L2 (green/gray) surrounding the solid S (black). Far behind the tip,
one has a L2-film migration process.
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L2

S

L1

a

FIG. 11. (Color online) Growth along the S/L1 interface. Far
behind the tip, one has a L2-film migration process.

where λ = (c2 − cS)/(c2 − c1) > 1 and χ = (�L
∞)2/(π�2).

Here λ = 3 and χ = 0.190. Therefore the ratio P2/PS � 10 is
large, and a quantitative comparison with the theory is difficult.
More precisely, the size of the simulated portion of the pattern
does not allow for an accurate determination of the curvature
of the S/L2 front.

It is interesting to note that χ , which tunes the ratio
P2/PS , has the same form as the quantity that determines
the ratio between the width of the interior lamella and the
Ivantsov radius for the growth of the two-phase finger in
the eutectic system [7]. In the case χ = 0, i.e., �L

∞ = 0, one
has PS = �2/(2λ − 2) and P2/PS = λ2. This result has been
presented for the LFM process above the peritectic temperature
in Ref. [16]. In the other limit χ → ∞, P2/PS → 4χ2, and
one recovers the Ivantsov relation for the L1/L2 interface; i.e.,
P2 � (�L

∞)2/π becomes independent of �2.

B. Metastable solid-liquid mixture (S + L1)

When a (S + L1) mixture is brought into a metastable
state below the monotectic temperature, the transformation
consists of the growth of the solid S and the liquid L2 along
the metastable S/L1 interface. In Fig. 11 we present the
corresponding pattern. The S/L1 interface is aligned with the
direction of growth far ahead of the triple junction and adopts
an angle in its neighborhood. Far behind the triple junction,
one has again a L2-film migration process.

This pattern is close to the one described in Ref. [17] for
the melting of a peritectic alloy along the solid-solid interface.
However, here a lateral shift a (perpendicular to the growth
direction) of the triple junction with respect to the asymptotic
position of the metastable interface exists contrary to the case
where the metastable interface separates two solid phases.
The miscibility gaps are such that (c1 − cS)/(c2 − c1) = 2,
and the driving forces are �1 = 0.0524 and �2 = 0.0233.
The concentration in L1 far ahead of the triple junction is
c∞ = c1S , and thus �L

∞ = �1(c1 − cS)/(c2 − c1) = 0.105
and �S

∞ � 0. Hence we have χ = 0.150 for the description of
the LFM process. Again λ = 3, and the size of the simulated
portion of the pattern does not allow one to calculate
accurately the ratio P2/PS .

V. SUMMARY

In this paper we have presented a study of the solidification
in the syntectic system applying a boundary integral technique
developed in our previous work [5] and a study of different
solidification scenarios in monotectic systems using the phase-
field method.

In the syntectic system we have focused on small deviations
from the symmetric pattern, corresponding to small values
ε � 1 of an asymmetry parameter ε. We have extracted from
our boundary integral calculations the scaling relations of the
relevant length scales, the rotation angle of the triple junction
δ, and the growth velocity, which are summarized in Eq. (7).

For the monotectic system we have presented phase-field
simulations of scenarios of solidification complementary to
the solidification along the liquid-liquid interface presented
in Ref. [5]. First, we have studied the two-phase fingers
growing at the expense of a single metastable liquid phase. We
have obtained a two-phase finger with the solid phase as the
exterior phase which is close to the eutectic finger presented
in Ref. [7], and in addition we have shown the possibility
of oscillatory regimes of this mode of growth. The existence
of these nonsteady state patterns is the reason why we have
employed phase field instead of boundary-integral methods
for the solution of this problem. We have obtained also a
two-phase finger where the solid phase is the interior phase,
and the asymptotics far behind the tip of the pattern correspond
to a liquid-film-migration process. Second, we have studied the
solidification along the solid-liquid interface, which exhibits
the same liquid-film-migration asymptotic behavior.
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