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We give a general phenomenological description of the steady-state 1D front propagation problem in two

cases: the solidification of a pure material and the isothermal solidification of two-component dilute alloys. The

solidification of a pure material is controlled by the heat transport in the bulk and the interface kinetics. The

isothermal solidification of two-component alloys is controlled by the diffusion in the bulk and the interface

kinetics. We find that the condition of positive-definiteness of the symmetric Onsager matrix of interface kinetic

coefficients still allows an arbitrary sign of the slope of the velocity-concentration line near the solidus in the

alloy problem or of the velocity-temperature line in the case of solidification of a pure material. This result offers

a very simple and elegant way to describe the interesting phenomenon of a possible non-single-value behavior

of velocity versus concentration that has previously been discussed by different approaches. We also discuss the

relation of this Onsager approach to the thin-interface limit of the phase-field description.
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I. INTRODUCTION

In recent years the phase-field approach to solidification

problems has attracted the attention of much research (see,

for example, Ref. [1] and references therein). It was originally

introduced as a mathematical tool to solve the free boundary

problem without directly tracking the interface position.

However, more recently it has also been considered as a

physical model that can bring additional information compared

to the sharp interface approach. In particular, it was observed

that steady-state 1D front propagation with positive velocity,

V = V0(�T − 1), (1)

is possible only if (�T − 1) > 0 (see, for example, Ref. [2])

is not the general situation. Here V is the steady-state front

velocity; V0 is the characteristic velocity that is proportional

to the kinetic growth coefficient; �T = (TM − T0)cp/L is the

dimensionless undercooling; TM is the melting temperature; T0

is the temperature in the original phase far from the interface;

cp is the heat capacity, which is assumed to be the same

in both phases; and L is the latent heat. Karma and Rappel

(KR) [3] introduced the thin-interface limit of the phase-field

description and found that

V =
V0(�T − 1)

1 − a WV0

DT

, (2)

where DT is the thermodiffusion coefficient, a is a positive

number of order unity that depends on the details of the

model, and W is the thickness of the interface in the phase-field

description. In the phased field model discussed in Ref. [3],

there is no any restriction on the parameter V0W/DT and the

velocity may be positive for (�T − 1) < 0. The same result

was obtained for the isothermal solidification of alloys by

many authors starting from a paper by Löwen et al. [4] in

the framework of phase-field description and also by Aziz and

Boettinger [5], who use a more phenomenological approach. In

the case of alloys the deviation from equilibrium is defined by

�C = (CL − C0)/(CL − CS) instead of �T . In the two-phase

region of the phase diagram, 0 < �C < 1. Here CL and CS

are the equilibrium concentrations of the initial and growing

phase, respectively, and C0 is the concentration of the initial

phase far from the interface. They found that the steady-state

growth is possible also inside the two-phase region of the

equilibrium phase diagram.

From the numerous papers on the derivation of the sharp

and thin-interface limits from a phase-field model we should

also mentioned the work by Elder et al. [6] and Umantsev [7]

and the paper by Korzhenevskii, Bausch, and Schmitz [8],

which contains many details and technical points. The basic

results of all these descriptions have the structure of Eq. (2)

in the vicinity of (�T (C) − 1) ≪ 1 and eventually lead to the

non-single-value behavior of the velocity as a function of the

driving force in the case of a negative “kinetic coefficient”

(Fig. 1). In this case the branch which is described by

Eq. (2) (dotted line in Fig. 1) is linearly unstable (see, for

example, Refs. [3,4,8]) while the “high velocity” branch of the

mentioned non-single-value behavior is linearly stable.

Qualitatively the same results have been obtained by the

numerical solution of 1D motion of the atomically rough

interface in binary alloys [9]. In this model instead of the

phase-field order parameter the authors used the fraction of

the atomic places which belongs to the growing phase. This

fraction changes from 0 to 1 during the growth. The evolution

equations for this quantity together with the concentration

fields in the two phases are given by Eqs. (5.1)–(5.3) in

Ref. [10]. The numerical analysis of Ref. [9] has shown that

both types of curves in Fig. 1 are possible. However, the

unstable (dotted line) branch was not seen in this dynamical

simulation.

An interesting explanation of a non-single-value behavior

of velocity versus concentration suggested by the phase-field

modeling and relative approaches cited above explicitly takes

inhomogeneities of the concentration field, on the scale of finite

interface thickness, into account. The purpose of this paper

is to give a complementary phenomenological description of

the steady-state 1D front propagation problem in two cases:

(i) the solidification of a pure material, which is controlled by

the heat transport in the bulk and the interface kinetics, and
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FIG. 1. Schematic dependence of the steady-state velocity V vs.

the dimensionless undercooling �T . Curve 1 corresponds to the

case aWV0/DT < 1 while curve 2 corresponds to the opposite case,

aWV0/DT > 1.

(ii) the isothermal solidification of two-component dilute

alloys, which is controlled by the diffusion in the bulk

and the interface kinetics. Describing the interface boundary

conditions we use only the general phenomenology of linear

nonequilibrium thermodynamics in the spirit of the Onsager

matrix of kinetic coefficients that has the proper symmetry

and is positive definite as required by the second law of

thermodynamics. This approach does not assume any specific

model of the interface and makes no assumption on its

thickness. The only requirement, as for any macroscopic

theory, is that the thickness is small compared the macroscopic

lengths. We will see that two mentioned problems are very

close to each other and can be formally mapped onto each

other. The mentioned restrictions on the Onsager matrix of

kinetic coefficients are not sufficient to determine the sign of

the slope of the velocity-concentration line near the solidus in

the alloy problem (or of the velocity-temperature line in the

case of solidification of a pure material). This result offers a

simple way to describe the mentioned above phenomenon of

a non-single-value behavior (Fig. 1).

The sharp (W → 0) and the thin-interface limits of the

phase-field description should lead to the effective macro-

scopic description with the boundary conditions in the spirit of

Onsager relations, where the elements of the Onsager matrix

are expressed in terms of the phase-field model parameters.

Indeed, these limits really correspond to such a description.

However, the mentioned condition of positive-definiteness of

the matrix of kinetic coefficients turns out to be a nontrivial

issue for the thin-interface limit and will be discussed in more

detail.

II. GROWTH OF A PURE MATERIAL

WITH HEAT TRANSPORT

We assume that phase 1 grows at the expense of phase

2 by a 1D front propagation with the steady-state velocity

V . In the bulk we have the thermal-conductivity equation. In

order to write down the boundary conditions at the interface,

we follow the description and notations given in Ref. [11] as

follows:

(µ2 − µ1)/TM = AV + BJE, (3)

(T2 − T1)/T 2
M = BV + CJE, (4)

where µi is the chemical potential of the corresponding phase

i at the interface. According to the energy conservation at the

interface (see also Eqs. (51) and (52) in Ref. [11]),

−λ1∇T1 = V TMS1 − JE, (5)

−λ2∇T2 = V TMS2 − JE . (6)

Here S1(T1) and S2(T2) are the entropies of two phases and

λi is the thermoconductivity of phase i. The total heat flux

JE , flowing through the interface from phase 2 into phase 1,

consists of the following two parts: the heat flux due to

the gradients of temperature and the energy flux due to the

finite velocity of the interface that takes into account the

different values of the entropy in each phase. We note that each

contribution to the total flux is discontinuous at the interface

while the total flux JE is, of course, continuous. This total flux

flowing through the interface together with the growth velocity

should be inserted in the linear relations between driving forces

and fluxes, Eqs. (3) and (4).

The elements of the Onsager matrix, which is symmetric

and positive definite, obey the conditions A,C > 0 and B2 <

AC. RK = CT 2
M is the Kapitza resistance and the cross

coefficient B describes the way the two entropies are shared

between the two sides of the interface during growth (for

a more detailed discussion of the physical meaning of the

different Onsager coefficients in this case, see Ref. [11]).

For the steady-state one-dimensional problem ∇T1 = 0

and T1 = T0 + L/cp, where L = TM [S2(TM ) − S1(TM )] is the

latent heat and cp is the heat capacity, T0 is the temperature

in the original phase far from the interface. We note that

in order to obtain the relation T1 = T0 + L/cp one should

expand the entropies near the equilibrium temperature TM

in the energy conservation condition (λ1∇T1 − λ2∇T2) =

V TM [S2(T2) − S1(T1)]. Now expanding the difference of the

chemical potentials near the equilibrium temperature TM , we

find

µ2(T2) − µ1(T1) = S2(TM )(TM − T2) − S1(TM )(TM − T1),

(7)

and, finally, we get

V =
L2(�T − 1)

cpT 2
M

[

A + CT 2
MS1S2 + BTM (S1 + S2)

] , (8)

where �T = (TM − T0)cp/L. We have used the usual notation

for solidification of pure materials. We see that the sign

of (�T − 1) in general is not determined by the Onsager

restriction B2 < AC. However, it is well defined in two cases:

(i) B = 0 and (ii) in the “isothermal” case, T1 = T2. In the later

case the growth rate is controlled by the “isothermal” kinetic

coefficient which is strictly positive due to the mentioned

restriction, B2 < AC [11]:

V =
(µ2 − µ1)

TMA[(1 − B2/(AC)]
=

L2(�T − 1)

cpT 2
MA[(1 − B2/(AC)]

, (9)
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Karma and Rappel obtained in their thin-interface limit

B = C = 0 and a coefficient A which may even be negative (β

in their notation). They discussed this “counterintuitive” issue

and gave some natural explanation for this phenomenon. We

will return to this point later.

III. ISOTHERMAL ALLOY SOLIDIFICATION

IN THE DILUTE LIMIT

We discuss the steady-state propagation of a 1D front with

velocity V during solidification of a two-component alloy at a

given temperature T . The concentration of B atoms is C1(x) in

phase 1 and C2(x) in phase 2. In the bulk these concentrations

are described by diffusion equations with diffusion coefficients

D1 and D2. In order to write down the boundary conditions

in this case we use the same phenomenological approach but

adapted to the alloy situation. Onsager relations connect two

fluxes JA and JB (at the boundary) of atoms A and B to two

driving forces δµA and δµB , which are the usual differences

in chemical potentials at the boundary. While the bulk is

described by diffusional equations for the concentration fields

for each phase, we still need three boundary conditions at the

interface. One is the conservation of B atoms at the interface.

We have also to relate the two concentrations C1 and C2 on both

sides of the interface to the growth velocity and gradients of the

concentrations. In the equilibrium these two concentrations are

just the liquidus and solidus concentrations. When the velocity

is finite, these two concentrations deviate from the equilibrium

values. We write (see, for example, Ref. [12] and references

therein),

δµA/T = AJA + BJB, (10)

δµB/T = BJA + CJB . (11)

This Onsager matrix should be positive definite: A and C must

be positive and B2 < AC. According to the conservation of B

atoms at the interface we also have [10]

−D1∇C1 = V C1 − JB, (12)

−D2∇C2 = V C2 − JB, (13)

V = JA + JB . (14)

Equation (14) is written for substitutional alloys. For interstitial

alloys V = JA. For dilute alloys the chemical potential are [13]

δµA/T = (C1 − C2) + (CL − CS), (15)

δµB/T = ln(C2/C1) + ln(CS/CL). (16)

Here phase 1 grows at the expense of phase 2. C1 and C2

are the concentrations of B atoms at the interface and CS and

CL are their equilibrium values; (CL − CS) ∼ (TM − T )/T

is proportional to the deviation of the temperature from its

equilibrium value for a pure A material. D1 and D2 are the

diffusion coefficients.

According to the mass conservation at the interface for the

steady-state 1D growth, we have JA = V (1 − C1) and JB =

V C1 because there is no gradient in the growing phase 1.

These relations are written for the substitutional alloys. For the

interstitial alloys, JA = V . However, in the dilute limit there

is no difference between these two alloys because C1 ≪ 1 and

can be neglected in the expression for JA for the substitutional

alloys. Moreover, the global mass conservation requires that

C1 = C0, where C0 is the concentration in the original phase 2

far from the interface. Solving the resulting system of equation,

we find the transcendental relation between velocity V and the

initial concentration C0 as follows:

ln

{

CS

CL

[

1 +
CL − CS

C0

− V (A/C0 + B)

]}

= V [B + CC0].

(17)

If the concentration C0 is close to CS and the velocity V is

small we find, expanding the logarithm up to linear order in

(C0 − CS) and V ,

V =
(CL − CS)(CS − C0)

CS[A + CCLCS + B(CL + CS)]
. (18)

For the general case of nondilute alloys, this equation reads,

V =
[f ′′

1 (CS)/T ](CL − CS)(CS − C0)

A(1 − CL)(1 − CS) + CCLCS +B[(CL + CS) − 2CLCS]
,

(19)

where f ′′
1 (C) is the second derivative of the free energy f1(C)

of the growing phase 1 with respect to the concentration. From

this expression it is clear that in the presence of the cross

coefficient B the sign of (CS − C0) is not determined by the

conditionB2 < AC and also depends on CL and CS . Moreover,

if the sign in the square brackets of Eq. (18) is negative and

C0 > CS for small positive velocity V then we find, for C0 =

CS apart from the solution V = 0, the second solution with

positive V . If the expression in the square brackets is negative

but small, we can expand the logarithm up to linear order in

(C0 − CS) and up to quadratic order in V and find,

(CL − CS)(CS − C0)

CS

= V [A + CCLCS + B(CL + CS)]

+V 2[A + BCS]2/(2CL). (20)

This expression shows that with increasing V the curve

V = V (C0), first, goes into the two-phase region and then

turns back, having another solution with finite velocity at

C0 = CS , and then goes into the one-phase region (see Fig. 1).

Eventually, for C0 → 0, the velocity, according to Eq. (17),

becomes V = (CL − CS)/A ∼ (TM − T )/(TA), as for the

solidification of a pure material.

First, we mention the clear analogy between two discussed

problems. From the basic equations we see this analogy if

we relate V → JA, JE → JB , TMS1(2) → C1(2), δµ → δµA,

and δT /T 2
M → δµB/T and apart from some thermodynamical

prefactors (�T − 1) → (CS − C0). The case δT = 0 in the

pure material problem then corresponds to zero values of δµB .

This, in turn, corresponds to a frequently used assumption that

the partition coefficient k = C1/C2 is equal to its equilibrium

value, k0 = CS/CL. In this case, as in the pure material

problem, stationary growth is possible only in the one-phase

region of the phase diagram. Actually, it seems that this result

is in agreement with the phenomenological description of

Refs. [5,8].
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IV. DISCUSSION AND CONCLUSION: THIN-INTERFACE

LIMIT OF PHASE-FIELD MODELS VERSUS

THE ONSAGER APPROACH

We discuss the thin-interface limit using the KR description

for the temperature field for a flat interface. The corresponding

problem for alloys leads to basically the same results (see, for

example, Refs. [6,8,14]). Originally it was designed to increase

computational power of the method by using larger values of

the interface width W and to mimic local equilibrium boundary

conditions [3]. Let us have a closer look at this limit from more

physical prospectives. In the thin-interface limit of Ref. [3] the

temperature distribution T (x) close to the interface is given by

Ti(x) = T (0) + Gix, where Gi is the temperature gradient in

the i-th phase (i = 1,2) at x = 0. At x = 0 the temperature

T1 = T2 = T (0) and in this description the Kapitza jump

is absent, T1 − T2 = 0. One should note that the value of

T (0) in this linear extrapolation procedure differs from the

real value of the smooth temperature field at the middle of

the interface obtained by the phase-field simulations. The

given linear extrapolation of the temperature field reasonably

coincides with direct phase field results only for H ≫ |x| ≫

W , where W is the width of the phase field and H ≫ W

is some macroscopic length scale. KR derived a kinetic

boundary condition that relates the effective temperature T (0)

and the growth velocity V by the kinetic coefficient AKR:

[TM − T (0)]L/T 2
M = AKRV . Using the asymptotic matching

procedure, they obtained that the kinetic coefficient has the

following structure:

AKR =
L2

T 2
Mcp

(

β0 − a
W

DT

)

, (21)

where β0 = 1/V0 > 0 is the KR kinetic coefficient in the sharp

interface limit (W → 0) and a is a positive numerical factor

of the order of unity that depends on some tiny details of the

specific phase-field model. The second negative term is due

to the finite thickness W of the interface and the described

linear extrapolation procedure. We also note that in this

description the other Onsager coefficients vanish, B = C = 0

in both sharp and and thin-interface limits. KR checked that

for the steady-state 1D growth, the analytical prediction,

Eq. (8) with the obtained value of AKR and B = C = 0,

is in good agreement with direct numerical simulations of

the phase-field model. However, there is a subtle physical

point concerning the interpretation of A, which may become

negative with some choice of phase-field-model parameters.

As correctly mentioned by KR, this conclusion may appear,

at first sight, thermodynamically inconsistent. However, as it

has been already mentioned, the temperature T (0) is not a real

temperature inside of the interface and deviates strongly from

the temperature obtained by phase-field simulation, which is

below T (0).

Let us discuss this nontrivial point in more detail. We can

imagine an extended interface with the thickness 2δ with two

boundaries located at x = ±δ. We emphasize that this length

scale δ differs from the phase-field interface width W and is,

for the moment, arbitrary, still being much smaller than any

relevant macroscopic length scales. We can easily derive the

corresponding matrix of Onsager coefficients using the values

of T and µ at the two boundaries of the extended interface

as T1 = T (0) − G1δ and T2 = T (0) + G2δ and then µ1(T1)

and µ2(T2). Using Eqs. (5) and (6) we express the temperature

gradients Gi in terms of JE and V , and using Eqs. (3) and

(4), we, finally, find the renormalized values of the Onsager

coefficients,

A(δ) = AKR + C(δ)T 2
M

(

S2
1 + S2

2

)/

2, (22)

B(δ) = −C(δ)TM (S1 + S2)/2, (23)

C(δ)T 2
M = 2δ/λ, (24)

where we have assumed that λ1 = λ2 = λ, as in Ref. [3]. A

few remarks are in order.

(i) The steady-state result, Eq. (8), is invariant with

respect to this renormalization of the Onsager coefficients,

i.e., independent of δ. It means that this δ family of Onsager

matrices is in good agreement with numerical simulations of

the phase-field model as well as the original KR case, δ = 0.

(ii) With the choice δ > 2aW the matrix of Onsager

coefficients becomes positive definite,A,C > 0 andAC > B2,

for arbitrary parameters of the phase-field model. This result

has a clear physical meaning. For δ ≫ W , we discuss only

the range of |x| where the used linear extrapolation of the

temperature field is in agreement with the temperature field

obtained by the phase field, while for δ ≪ W the temperature

at the boundaries strongly deviates from the phase-field

description, which is fully thermodynamically consistent by

itself. In other words, for δ ≫ W , the obtained matrix of

kinetic coefficients does describe real physical dissipation in

the region δ, while for δ ≪ W this “effective” matrix does

not describe the real physical dissipation but still leads to the

correct expression for the steady-state growth velocity.

This possible renormalization with δ, much smaller than

any macroscopic length scale H , is not specific only to the

phase-field models and represents a small effect of the order

of δ/H ≪ 1. It has the same structure as the “negative”

phase-field effects W/H . The ideology of any macroscopic

description relies on this small parameter as an expansion

parameter of the theory. These corrections should be irrelevant

in the general case of the diffusional transformation where

the bulk dissipation plays the major role (for example, in

the case of dendritic growth at small undercooling). We have

seen, however, that in the specific problem of steady-state

1D front propagation, this small term (proportional to W ) is

responsible for the sign of the slope in the phase-field model

description. This happens because the bulk dissipation (being

still much larger than the interfacial dissipation) just bring us

to the vicinity of point �T = 1 and does not contribute to the

slope. In this case, the growth velocity is entirely controlled

by the interface kinetics. We note that the interpretation

of the nontrivial behavior in the vicinity of � = 1 due to

sufficiently negative values of the phenomenological cross

coefficient B does not assume any specific model of the

interface. At the same time, the explanation suggested by

the phase-field modeling explicitly takes inhomogeneities of

the temperature and concentration fields, on the scale of finite

interface thickness, into account.

In other words, there is no doubt about thermodynamic

consistency of the phase-field model for arbitrary values of

the parameter V0W/DT apart from the obvious restrictions,
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V0 > 0 and DT > 0. However, the interpretation of the thin-

interface limit and its relation to the matrix of dissipative

Onsager coefficients should be taken with care. We illuminate

this warning by the following additional example. Let us

assume that, initially, the two-phase system is at some

temperature T slightly below the melting temperature TM .

This system evolves toward equilibrium with a solidification

velocity V that decays as V ∼ t−1/2 at large time t . This

behavior would be observed in direct phase-field simulations

for arbitrary parameters of the model and independent of

the sign of the effective kinetic coefficient, Eq. (21). A

slightly different, but close in spirit, nonstationary evolution

has been discussed in Ref. [3] confirming this behavior.

However, if one solved this problem not by a direct phase-

field simulation but by solving the free boundary problem

with effective boundary conditions described by the the

matrix of kinetic coefficients, A = AKR and B = C = 0

(the thin-interface limit of Ref. [3]), the result would differ

markedly ifAKR < 0. The system would melt, instead of being

solidified, exhibiting strong instabilities and would never reach

the described physical attractor. On the other hand, if one

solved the same problem using the renormalized positive-

definite matrix of Onsager coefficients, Eqs. (22)–(24),

the result would be basically the same as in direct phase-field

simulations and physically relevant. Therefore, we conclude

that the interpretation of the thin-interface limit of Ref. [3] as

the correspondence between the phase-field description and

the classical macroscopic approach is incorrect for the wide

class of nonstationary problems if AKR < 0. However, the

renormalized positive-definite matrix of Onsager coefficients

leads to such a correspondence in the macroscopic limit for

arbitrary AKR.

Additionally, we address one more point. The phase-field

model of Ref. [3] contains fewer independent parameters to

describe the kinetic properties of the interface (only A or β0)

than is allowed by the general phenomenology (A,B,C). While

an independent parameter C can be introduced in a slightly

modified version of the phase-field model, the introduction

of the independent cross coefficient B is a serious problem.

As pointed out in Ref. [15], according to Curie’s principle

[16], there can be no kinetic coupling between the scalar

nonconserved phase-field order parameter φ and vectorial

diffusional fluxes of the conserved quantities energy and/or

concentration. Thus, one should not expect an independent

cross coefficient B to appear in the effective boundary condi-

tions, Eqs. (3), (4), (10), and (11). However, in the general case

of the phenomenological macroscopic description, we do not

doubt the existence of such a kinetic coupling at the interface

between the normal growth velocity and normal diffusional

fluxes through the interface. It is conceivable that this coupling

can be introduced in modified versions of the phase-field model

where ∇φ/|∇φ|, the unit vector normal to the interface, can

be used to produce the corresponding vectorial quantities.

This issue may also be relevant to the antitrapping current

introduced in some nonvariational versions of the phase-field

model [14,17] for different purposes. The antitrapping current

introduces a new kinetic coefficient and uses the unit vector

normal to the interface. To use this idea for the description of

the cross effect of the interface kinetics in phase-field models,

one should carefully consider the necessary symmetry that is

obligatory for this cross effect. A more detailed discussion of

this question is far beyond the scope of this paper.

Finally, we stress that the interface kinetics and its proper

description is very important for many other interesting

phenomena observed in solidification of binary alloys and also

in solid-solid transformations. A very nice and deep discussion

of solute trapping and its relation to cross terms of the Onsager

matrix is given in Ref. [12]. Another example is the oscillation

of the solidification front in a binary alloy which is growing in

the setup of directional solidification. In many metallic alloys

this leads to the formation of banded structures [18]. For very

recent achievements in this direction and related phenomena,

see Ref. [19] and references therein.
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