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[1] The failure of frictional interfaces and the spatiotem-
poral structures that accompany it are central to a wide
range of geophysical, physical and engineering systems.
Recent geophysical and laboratory observations indicated
that interfacial failure can be mediated by slow slip rupture
phenomena which are distinct from ordinary, earthquake-
like, fast rupture. These discoveries have influenced the
way we think about frictional motion, yet the nature and
properties of slow rupture are not completely understood.
We show that slow rupture is an intrinsic and robust prop-
erty of simple non-monotonic rate-and-state friction laws.
It is associated with a new velocity scale cmin, determined
by the friction law, below which steady state rupture cannot
propagate. We further show that rupture can occur in a con-
tinuum of states, spanning a wide range of velocities from
cmin to elastic wave-speeds, and predict different properties
for slow rupture and ordinary fast rupture. Our results are
qualitatively consistent with recent high-resolution laboratory
experiments and may provide a theoretical framework for
understanding slow rupture phenomena along frictional inter-
faces. Citation: Bar Sinai, Y., E. A. Brener, and E. Bouchbinder

(2012), Slow rupture of frictional interfaces, Geophys. Res. Lett.,

39, L03308, doi:10.1029/2011GL050554.

1. Introduction

[2] Understanding the dynamic processes that govern
interfacial failure and frictional sliding, e.g., an earthquake
along a natural fault, remains a major scientific challenge.
Recently, several geophysical and laboratory observations
have pointed to the possibility that stress releasing inter-
facial slip can be mediated by the propagation of rupture
fronts whose velocity is much smaller than elastic wave-
speeds [Rubinstein et al., 2004; Ben-David et al., 2010a;
Nielsen et al., 2010; Peng and Gomberg, 2010].
[3] The nature and properties of these slow rupture fronts,

and in particular their propagation velocity, are still not fully
understood. The experiments of Rubinstein et al. [2004] and
Ben-David et al. [2010a] clearly demonstrate the existence
of a minimal propagation velocity below which no fronts are
observed. To the best of our knowledge, no theoretical
understanding of this minimal velocity is currently available.
[4] Frictional phenomena are commonly described using

phenomenological rate-and-state friction models, see for
instance Dieterich [1979], Ruina [1983], Baumberger and
Caroli [2006], and Bizzarri [2011]. Two possible mechan-
isms for generating slow rupture events were invoked in this
framework. The first involves a non-monotonic dependence

of the steady state frictional resistance on slip velocity
[Weeks, 1993; Kato, 2003; Shibazaki and Iio, 2003], while
the second involves spatial variation of frictional parameters
and stress heterogeneities [Yoshida and Kato, 2003; Liu and
Rice, 2005]. The former mechanism is an intrinsic property
of the friction law, while the latter mechanism is an extrinsic
one. The laboratory measurements of Rubinstein et al. [2004]
and Ben-David et al. [2010a, 2010b], performed on a quasi-
2D spatially homogeneous system, may suggest that the
second mechanism is not necessary for the existence of
slow rupture.
[5] In this study we show that slow rupture naturally

emerges in the framework of spatially homogeneous rate-
and-state friction models. Our analysis is based on a friction
model that includes an elastic response at small shear stresses
and a transition to slip above a threshold stress. The model
exhibits a crossover from velocity-weakening friction at
small slip rates to velocity-strengthening friction at higher
slip rates, which we argue to be a generic feature of friction.
[6] The existence of a minimal rupture front velocity cmin,

which is determined by the friction law and is independent
of elastic wave-speeds, is predicted analytically in a quasi-
1D limit. We show that there exists a continuum of rupture
fronts with velocities ranging from cmin to elastic wave-
speeds, in qualitative agreement with recent laboratory mea-
surements [Ben-David et al., 2010a] and possibly consistent
with field observations [Peng and Gomberg, 2010]. We fur-
ther show that slow rupture is significantly less spatially
localized than ordinary fast rupture. These predictions are
corroborated by explicit calculations for a rock (granite) and
a polymer (PMMA), demonstrating the existence of slow
rupture which is well-separated from ordinary fast rupture.
We believe that these results are potentially relevant for
slow/silent earthquakes in geological contexts.

2. A Rate-and-State Friction Model

[7] Here we extend the recent ideas of Brener and
Marchenko [2002], Braun et al. [2009], and Bouchbinder
et al. [2011] into a realistic rate-and-state model of spa-
tially extended frictional interfaces. As is well known, such
interfaces are composed of an ensemble of contact asperi-
ties whose total area Ar is much smaller than the nominal
contact area An and which exerts a shear stress t that resists
sliding motion. We decompose t into an elastic part, emerg-
ing from the elastic deformations of contact asperities that
are characterized by a coarse-grained stress t el, and a vis-
cous part tvis

t ¼ tel þ tvis ¼ t el þ h v*A sgn vð Þlog 1þ vj j=v*ð Þ; ð1Þ

where h is a viscous-friction coefficient, v is the slip
velocity (slip rate), v* is a low-velocity cutoff scale and A =
Ar /An ≪ 1 is the normalized real contact area. The viscous-
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stress tvis, which increases with v and scales with A, is usually
associated with activated rate processes at asperity contacts
(see also discussion by Baumberger and Berthoud [1999]).
The 1 inside the log ensures a regular behavior in the limit
v → 0, but otherwise plays no crucial role in what follows.
[8] The next step is writing down a dynamic evolution

equation for tel. tel is stored at contact asperities at a rate
determined by v and that is proportional to both the inter-
facial elastic modulus m0 and A. It is released as contact
asperities are destroyed after slipping over a characteristic
distance D (of the order of the size of a contact as in
conventional rate-and-state models [Dieterich, 1979; Ruina,
1983; Baumberger and Caroli, 2006]), when the asperity-
level stress surpasses a yield-like threshold tc. This physical
picture is mathematically captured by writing [Bouchbinder
et al., 2011]

ṫ el ¼ m0Av=h� t el vj jq t=A� tcð Þ=D; ð2Þ

where h is the effective height of the asperities. Note that
the coarse-grained stress t is enhanced by a factor A�1

≫ 1 at
the asperities level and that the geometric nature of elastic
stress relaxation, emerging from the multi-contact nature of
the interface, is captured by the introduction of a spatial
length D. The appearance of a Heaviside step function q(⋅) is
an outcome of the basic notion of a local static threshold for
sliding motion. The evolution law in equation (2) features a
reversible elastic response at small shear stresses, t ≃ tel =
m0Au/h, where u is the shear displacement. This elastic
response is usually not included in friction models (but see
Bureau et al. [2000] and Shi et al. [2010]), even though
it was directly measured experimentally [Berthoud and
Baumberger, 1998].
[9] To proceed, we write the normalized contact area A

in terms of a state variable f as A(f, s) = A0(s)[1 + b log(1 +
f/f*)] [Baumberger and Caroli, 2006]. Here s is the (com-
pressive) normal stress and A0(s) = s/sH, where sH is the
hardness. The evolution of A is phenomenologically cap-
tured by Dieterich’s law [Dieterich, 1979], extended here by
stipulating that the transition from the aging regime (v = 0)
to the sliding regime (v ≠ 0) is controlled by the same step
function as in equation (2), yielding

ḟ ¼ 1� f vj jq t=A� tcð Þ=D; ð3Þ

where f is interpreted as the “geometric age” of the con-
tacts. Equations (1)–(3) determine the evolution of t(t), i.e.,
constitute our proposed friction law. We note that if
equation (2) is replaced by its steady state solution, tel �
A(f), our friction model becomes essentially identical to
the conventional rate-and-state model (see also auxiliary
material discussion).1

[10] Before we proceed we note a very important feature
of rate-and-state friction models, which is not specific to the
present model. In the absence of persistent sliding, v = 0, we
have f = t and the contact area ages logarithmically A ∝ 1 +
b log(1 + t/f*), as is widely observed [Baumberger and
Caroli, 2006]. The latter form suggests that the logarith-
mic law is cutoff at short timescales, smaller than f*, as
was directly confirmed experimentally by Dieterich [1979],

Nakatani and Scholz [2006], and Ben-David et al. [2010b].
This very same short timescales cutoff manifests itself also
under persistent sliding, v ≠ 0, for which we have f = D/|v|
and A ∝ 1 + b log[(1 + D/(f*|v|)]. In this case, A saturates
at a finite value above a typical slip rate of order D/f*
and the fixed-point of equation (2), tel ∝ A, becomes
v-independent as well. As a consequence, t, which usually
exhibits a velocity-weakening behavior at small v, becomes
velocity-strengthening as the viscous-friction term in
equation (1) takes over (see also discussion by Bizzarri
[2011]). Thus, rate-and-state friction models quantitatively
predict a non-monotonic dependence of the steady state
sliding friction on the slip rate, an observation that has been
largely overlooked in the literature (but see Weeks [1993],
Shibazaki and Iio [2003], Baumberger and Caroli [2006],
and Yang et al. [2008]) and that will play an important role
below.

3. Steady State Rupture Fronts

[11] Propagating front solutions exist in multi-stable sys-
tems in which one homogeneous (space independent) solution
invades another one, giving rise to non-trivial spatiotem-
poral structures. The spatially homogeneous solutions of
equations (1)–(3), as a function of a driving stress td, are
shown in Figure 1a. A branch of elastic (static) solutions
exists at v = 0, where aging effects are neglected, i.e., we
assume that y0 ≡ b log(1 + t /f*) is roughly constant for the
timescales relevant for front propagation (essentially we set
t = f0). A branch of steady sliding solutions with v > 0
takes the form

f ¼ tss=s ≃ f0 þ a log 1þ v=v*ð Þ þ b log 1þ D=f*vð Þ; ð4Þ

where a ≡ h v*/sH, b ≡ m0Db/sHh, f0 ≡ b/b and f is
the steady sliding friction coefficient. Note that we neglec-
ted a term of order log2 in equation (4). As discussed
above, steady sliding friction is indeed non-monotonic
(when a < b); friction is velocity-weakening for v* ≪ v ≪

D/f* and velocity-strengthening for v ≫ D/f*, with a
minimum at vm ≃ (D/f*)(b � a)/a.
[12] At the minimum, we define the friction stress as tm =

tss(vm). Figures 1b–1d present experimental data for a
polymer (PMMA), a rock (granite) and paper, where the last
two data sets clearly demonstrate the non-monotonic nature
of sliding friction, and the first one presumably does not
span a sufficiently large range of v’s to detect a minimum.
[13] Consider now a homogeneous driving stress t d. For

t d < tm there exists only one stable homogeneous solution,
the elastic (static) one. Upon increasing t d above tm, three
solutions exist: the elastic one with v = 0 and two steady
sliding solutions, one with v < vm (typically unstable) and
one with v > vm (typically stable). The critical point t d = tm
corresponds to a bifurcation, which suggests a qualitative
change in the behavior of the system. At this point we
expect steady state propagating rupture, in which a solu-
tion with v ≥ vm invades an elastic (static) solution with
v = 0, to emerge. Denote the propagation velocity of such
fronts by c and the one corresponding to td = tm by cmin.
[14] In order to find propagating rupture solutions, and in

particular to calculate cmin, we need to couple the friction
law in equations (1)–(3) to an elastic body. It would not be
easy to analytically calculate cmin when the body is a 2D

1Auxiliary materials are available in the HTML. doi:10.1029/
2011GL050554.
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medium. Therefore, to gain analytic insight into the prop-
erties of the steady state fronts, we assume that the height
H of the elastic body (say in the y-direction) is much
smaller than the spatial scale of variation ‘ of fields along
the interface (in the x-direction), i.e., we consider a quasi-1D
limit. Under these conditions we obtain (auxiliary material)

Hr∂tt u x; tð Þ≃Hm∂xx u x; tð Þ þ td � t x; tð Þ; ð5Þ

where m is the bulk shear modulus and u is the interfacial
shear displacement (slip) that satisfies ∂tu = v. Note that we
have omitted constants of order unity in equation (5) and
that in the quasi-1D limit both the driving stress td and the
friction stress t do not appear as boundary conditions, but
rather as terms in the “bulk” equation.
[15] We now look for steady state propagating solutions of

equations (2), (3) and (5) in which all of the fields take the
form g(x = x � ct), where c is the propagation velocity, such
that a sliding solution at x → �∞ propagates into an elastic
solution at x → ∞. Smoothly connecting these two different
solutions around x = 0 provides solvability conditions that
allow the calculation of c. We stress that c must be distin-
guished from the slip rate v.
[16] cmin is being estimated using a scaling calculation

in which the loading td is homogeneous and equals to
its threshold value tm. A self-consistency constraint on
the quasi-1D formulation is H ≪ ‘, where ‘ is the spatial
scale characterizing all of the fields in the front solution
(as defined above). We first use ∂t = �c∂x to transform
equations (2), (3) and (5) into the following set of coupled
ordinary differential equations

H m=c� crð Þ∂xv ¼ td � t; ð6Þ

�c∂xt
el ¼ m0A f;sð Þv=h� vj jt elq t=A� tcð Þ=D; ð7Þ

�c∂xf ¼ 1� f vj jq t=A� tcð Þ=D: ð8Þ

We stress that the front velocity c in these equations is not a-
priori known, but is rather a “nonlinear eigenvalue” of this
problem, which is determined from the condition that the
spatially-varying propagating solution properly converges to
the homogeneous sliding solution at x → �∞ and to the
homogeneous elastic solution at x → ∞.
[17] A scaling analysis of the above equations (auxiliary

material) yields

‘ cminð Þ � Dcmin=vm and cmin � vm

ffiffiffiffiffiffiffiffiffiffiffiffiffi

mH

sDDf

s

; ð9Þ

where sD f is the dynamic stress drop, cf. Figure 2
(middle).
[18] Several features of this central result are noteworthy.

First, cmin is finite and proportional to vm. Second, it is
independent of inertia, i.e., it does not scale with the elastic

wave speed cs =
ffiffiffiffiffiffiffiffi

m=r
p

[Brener and Marchenko, 2002].

Finally, cmin depends on: (i) the properties of the friction
law, e.g., on constitutive parameters such as the viscous-
friction coefficient h (through vm) and the (dimensionless)
dynamic stress drop D f, and on the microscopic geometric
quantity D, (ii) the bulk geometry through H, (iii) the normal
stress as s�1/2 and (iv) the bulk shear modulus m. We expect
these features to remain qualitatively valid independently of
the explicit form of the friction law and of dimensionality as
long as steady sliding friction exhibits a non-monotonic

Figure 1. (a) A schematic sketch of the homogeneous solutions of t(v). (b) f(v) for PMMA [Baumberger and Berthoud,
1999]. The solid line is a fit to equation (4). (c) f (v) for granite with s = 5 MPa [Kilgore et al., 1993], in which we added
an overall constant. The solid line is a fit to equation (4). (d) f (v) for paper [Heslot et al., 1994].
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behavior (cf. Figure 1a), as suggested by Bouchbinder et al.
[2011].
[19] To test the analytic prediction in equation (9), we

determine the friction parameters for a rock (granite) and a
polymer (PMMA) using various sources and data sets
(auxiliary material). In addition, we set H = 100mm, and s =
5 MPa for granite (as in Figure 1c) and s = 1 MPa for
PMMA (as by Ben-David et al. [2010a, 2010b]). Finally,
the state of the interface in the non-flowing region was
chosen such that y0 = 0.06 (granite) and y0 = 0.6 (PMMA).
In Figure 2 we show a steady state rupture solution obtained
by numerically integrating our model equations for granite.
The propagation velocity, cmin = 3.3 mm/sec, is about than
six orders of magnitude smaller than cs � 103 m/sec, quali-
fying it as “slow rupture”, and ‘(cmin) is on a mm scale,
satisfying H ≪ ‘ as required by self-consistency.
[20] A similar calculation for PMMA (auxiliary material)

yields cmin = 3.8 m/sec, which is about three orders of
magnitude larger than cmin for granite. This is expected since
the square root term in equation (9) is not dramatically dif-
ferent for the two materials, but vm is (cf. Figures 1b and 1c).
Recall that vm � D/f* and that D is in the mm scale for both
materials (auxiliary material), which imply that the differ-
ence emerges from f*. Indeed, f* � 0.1 � 1 sec for granite
[Dieterich, 1979; Nakatani and Scholz, 2006] and f* �
10�4 � 10�3 sec for PMMA [Ben-David et al., 2010b].
[21] We test the prediction in equation (9) by each time

varying one parameter on the right-hand-side and comparing
the prediction to the numerically calculated cmin. The results
are presented in Figure 3 and exhibit excellent agreement
between the analytic prediction and the numerically calcu-
lated values of cmin for granite (similar results were obtained
for PMMA). This result clearly and directly demonstrates

the existence of friction-controlled slow rupture in our
model.

4. The Spectrum of Rupture Fronts

[22] The finite velocity scale cmin implies there are no
solutions with c < cmin, i.e., the existence of a “forbidden”
range of velocities in the spectrum of steady state rupture
modes [Bouchbinder et al., 2011]. In Figure 4a we show
the full spectrum of rupture propagation velocities as a
function of td ≥ tm for PMMA (a similar spectrum is
obtained for granite, although cmin is much smaller in this
case). Indeed, there are no solutions with c < cmin and there
exists a continuum of states between cmin and the elastic
wave speed cs. This continuous spectrum seems to be qual-
itatively similar to recent laboratory measurements [Ben-
David et al., 2010a], reproduced here in Figure 4b. These
measurements, though not obtained under globally homo-
geneous loading and were done in 2D, directly demonstrate
the existence of a threshold driving stress, a minimal slow
rupture velocity and saturation at an elastic wave speed.
A detailed quantitative comparison to the experiments requires
fully 2D calculations which are currently underway.
[23] Upon increasing td sufficiently above tm, rupture

travels at a non-negligible fraction of the sound speed and
we can no longer neglect the inertial term in equation (6).
A scaling analysis (auxiliary material) yields

‘ c � csð Þ � e�t d=as ≪ ‘ cminð Þ: ð10Þ

The strong inequality results from the exponential decay of
‘(c) with td in the inertial regime and the typically small
value of a (�0.01). This result predicts that slow rupture

Figure 2. From top to bottom, v(x), t (x) (green), tel(x) (magenta) and A(x) for a steady state rupture mode in granite prop-
agating from left to right at cmin ≈ 3.3 mm/sec ≪ cs. sDf is the dynamic stress drop.
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Figure 3. The numerically calculated cmin for granite vs. the analytic prediction appearing on the right-hand-side
of equation (9), which we denote here as cpr. (inset) cmin/vm vs. ‘(cmin)/D as obtained in the numerical calculations,
cf. equation (9). The dashed lines are guides to the eye.

Figure 4. (a) c/cs vs. t
d/tm for PMMA, under a fixed s, in semi-log (main) and linear (inset) scales. (b) c/cL vs. t/s in the

PMMA experiments of Ben-David et al. [2010a] (courtesy of O. Ben-David and J. Fineberg) in semi-log (main) and linear
(inset) scales. cL is the longitudinal wave-speed and t/s is rescaled such that the minimal value below which no rupture
modes were observed equals unity. cmin here is of the order of 10 m/sec. (c) ‘ vs. td/tm for the spectrum in Figure 4a.
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is much less spatially localized as compared to ordinary
fast rupture. In Figure 4c we test this prediction by plotting
‘ vs. t d/tm. The numerical results clearly confirm the theo-
retical prediction, demonstrating that indeed slow rupture
is significantly less localized than rupture propagating at
elastodynamic velocities. Furthermore, the exponential depen-
dence predicted in equation (10) is quantitatively verified
and the slope agrees with �1/as.

5. Summary and Conclusions

[24] Our results, based on a rate-and-state friction law,
show that slow rupture is a well-defined and generic state
of frictional interfaces. The non-monotonic dependence of
the steady state sliding friction on the slip velocity gives rise
to a new, friction-controlled, velocity scale cmin below which
no steady state rupture can propagate. Furthermore, our
analysis demonstrates that rupture states span a continuum,
from friction-controlled slow rupture to inertia-limited,
earthquake-like, fast rupture [Peng and Gomberg, 2010].
One may speculate that transient rupture modes observed
under complex, spatially inhomogeneous, conditions are
short-lived excitations of these steady rupture states, as was
suggested within a specific context by Bouchbinder et al.
[2011]. If true, steady state rupture fronts may play a role
analogous to “normal modes” or “eigenstates” in other
dynamical contexts.
[25] The results presented are qualitatively consistent with

recent laboratory measurements on PMMA [Rubinstein
et al., 2004; Ben-David et al., 2010a], while similar results
were obtained for a rock (granite). A quantitative compari-
son to experimental data requires 2D calculations which are
currently underway. We hope to apply our ideas to a con-
crete geophysical system (e.g., to a slow/silent earthquake)
in a future investigation.
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