001     22949
005     20230426083037.0
024 7 _ |a 10.1103/PhysRevB.86.094436
|2 DOI
024 7 _ |a WOS:000309267800005
|2 WOS
024 7 _ |a 2128/10840
|2 Handle
037 _ _ |a PreJuSER-22949
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |a Blizak, S.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB109067
245 _ _ |a Ab initio investigations of magnetic properties of FeCo monolayer alloy films on Rh(001)
260 _ _ |a College Park, Md.
|b APS
|c 2012
300 _ _ |a 094436
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Physical Review B
|x 1098-0121
|0 4919
|y 9
|v 86
500 _ _ |3 POF3_Assignment on 2016-02-29
500 _ _ |a Helpful discussions with D. Wortmann are gratefully acknowledged. Furthermore, S. Blizak acknowledges financial support from the Algerian ministry of higher education and scientific research.
520 _ _ |a The objective of this work is to employ spin-polarized density functional theory (sDFT) calculations for the exploration of ultrathin magnetic films with large magnetic moments and a strong perpendicular anisotropy. Monolayer films of Fe1-xCox (with x = 0, 0.25, 0.5, 0.75, and 1) on Rh(001) were addressed to study their magnetic properties using the all-electron full-potential linearized augmented plane wave (FLAPW) method in film geometry. We studied the magnetic order of these films including structural relaxations of the topmost layers. Fe1-xCox monolayer films were found to be ferromagnetic (FM) in a broad range of Co content x with a maximum magnetic moment of 2.8 mu(B) and of an out-of-plane magneto-crystalline anisotropy of 0.25 meV per magnetic atom at x = 0.5. The sDFT results were mapped onto a classical Heisenberg model, demonstrating FM Fe-Co and Co-Co couplings, while the Fe-Fe interaction is antiferromagnetic on Rh(001). The ordering temperature of the FeCo film was estimated to be well above room temperature (482 K).
536 _ _ |a Grundlagen für zukünftige Informationstechnologien
|c P42
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK412
|x 0
542 _ _ |i 2012-09-28
|2 Crossref
|u http://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Bihlmayer, G.
|b 1
|u FZJ
|0 P:(DE-Juel1)130545
700 1 _ |a Blügel, S.
|b 2
|u FZJ
|0 P:(DE-Juel1)130548
773 1 8 |a 10.1103/physrevb.86.094436
|b American Physical Society (APS)
|d 2012-09-28
|n 9
|p 094436
|3 journal-article
|2 Crossref
|t Physical Review B
|v 86
|y 2012
|x 1098-0121
773 _ _ |a 10.1103/PhysRevB.86.094436
|g Vol. 86, p. 094436
|p 094436
|n 9
|q 86<094436
|0 PERI:(DE-600)2844160-6
|t Physical review / B
|v 86
|y 2012
|x 1098-0121
856 7 _ |u http://dx.doi.org/10.1103/PhysRevB.86.094436
856 4 _ |u https://juser.fz-juelich.de/record/22949/files/PhysRevB.86.094436.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/22949/files/PhysRevB.86.094436.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/22949/files/PhysRevB.86.094436.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/22949/files/PhysRevB.86.094436.jpg?subformat=icon-700
|x icon-700
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/22949/files/PhysRevB.86.094436.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:22949
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 1 _ |b Schlüsseltechnologien
|k P42
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|1 G:(DE-HGF)POF2-420
|0 G:(DE-Juel1)FUEK412
|2 G:(DE-HGF)POF2-400
|v Grundlagen für zukünftige Informationstechnologien
|x 0
913 2 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-529H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 0
914 1 _ |y 2012
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1020
|2 StatID
|b Current Contents - Social and Behavioral Sciences
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|g PGI
|x 0
920 1 _ |g IAS
|k IAS-1
|l Quanten-Theorie der Materialien
|0 I:(DE-Juel1)IAS-1-20090406
|x 1
|z IFF-1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 2
920 1 _ |0 I:(DE-Juel1)VDB1045
|k JARA-SIM
|l Jülich-Aachen Research Alliance - Simulation Sciences
|g JARA
|x 3
970 _ _ |a VDB:(DE-Juel1)139771
980 1 _ |a FullTexts
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)VDB1045
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IAS-1-20090406
981 _ _ |a I:(DE-Juel1)VDB1045
981 _ _ |a I:(DE-Juel1)VDB881
999 C 5 |a 10.1088/0022-3727/41/9/093001
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.100.037205
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.103.147203
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.80.064415
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.83.024407
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.54.3380
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.63.052405
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.73.155428
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.93.027203
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRev.136.B864
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRev.140.A1133
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0022-3719/5/13/012
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.24.864
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.19.1706
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.77.3865
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.42.5433
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.73.224208
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 A. R. Mackintosh
|y 1980
|2 Crossref
|t Electrons at the Fermi surface
|o A. R. Mackintosh Electrons at the Fermi surface 1980
999 C 5 |1 S. Blügel
|y 2007
|2 Crossref
|t Handbook of Magnetism and Advanced Magnetic Materials
|o S. Blügel Handbook of Magnetism and Advanced Magnetic Materials 2007
999 C 5 |a 10.12693/APhysPolA.92.427
|9 -- missing cx lookup --
|1 P. J. Jensen
|p 427 -
|2 Crossref
|t Acta Phys. Pol. A
|v 92
|y 1997
999 C 5 |a 10.1103/PhysRevB.39.865
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/10/14/012
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.43.11527
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.2710181
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21