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We analyze cellular dynamical mean-field theory �CDMFT� and the dynamical cluster approximation

�DCA�. We derive exact sum-rules for the hybridization functions and give examples for dynamical mean-field

theory, CDMFT, and DCA. For impurity solvers based on a Hamiltonian, these sum rules can be used to

monitor convergence of the bath-parametrization. We further discuss how the symmetry of the cluster naturally

leads to a decomposition of the bath Green matrix into irreducible components, which can be parametrized

independently, and give an explicit recipe for finding the optimal bath parametrization. As a benchmark we

revisit the one-dimensional Hubbard model. We carefully analyze the evolution of the density as a function of

chemical potential and find that, close to the Mott transition, convergence with cluster size is unexpectedly

slow. Going from one to two dimensions we find that fitting the bath becomes in general significantly more

difficult, requiring a large number of bath sites. For such large baths our symmetry-adapted approach should

prove crucial for finding a reliable bath-parametrization.
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I. INTRODUCTION

Strongly correlated materials are characterized by the in-

terplay of kinetic energy and sizable short-range electronic

repulsion, which cannot be described with single-particle ap-

proaches or standard perturbative theories. The dynamical

mean field theory1,2 �DMFT� has proven extremely powerful,

in particular for the description of the correlation-driven

Mott transition. Yet DMFT is strictly local. A number of

recent developments are aimed at overcoming this limitation

and are greatly contributing to the understanding of the phys-

ics of strongly correlated systems.3–9 In quantum cluster

theories7 the k dependence is introduced by considering a

small number of sites, instead of the single correlated site of

DMFT, and embedding them in a bath, i.e., a dynamical

mean-field host determined self-consistently. This is a good

approximation when the self-energy is reasonably localized,

which can be systematically improved by considering larger

and larger clusters.10

Cluster extensions of DMFT are not unique. Here we con-

sider the two main flavors, cellular dynamical mean-field

theory5 �CDMFT� and the dynamical cluster approximation3

�DCA�. Finite temperature Monte Carlo provides an efficient

cluster solver, however, to obtain spectra on the real-

frequency axis, data for imaginary time must be analytically

continued, usually applying maximum entropy. If the spec-

trum has structures on a small energy scale, this approach

can lead to problems. It is then natural to explore

Hamiltonian-based solvers, like the Lanczos method, which

directly give result on the real-frequency axis.

Lanczos is extensively applied to DMFT and results are

reliable and very accurate. The critical step in such calcula-

tions is the fitting of the bath degrees-of-freedom. In cluster

methods this step gets more involved. This is one of the

reasons why it found few applications for cluster methods:

To the best of our knowledge, it has so far only been used for

CDMFT calculations of very small clusters. Our aim is there-

fore to give a systematic formulation, exploiting symmetries

to arrive at an optimal parametrization of the bath. In addi-

tion we derive exact sum rules for the bath Green’s func-

tions. As an application, we investigate the one-dimensional

Hubbard model with CDMFT in detail,11–13 paying particular

attention to the convergence with the size of both bath and

cluster.

The paper is organized as follows: To fix the notation, in

Sec. II, we give a unified formulation of CDMFT and DCA

in a formalism using a Hamiltonian solver. In Sec. III we

derive general sum rules for the hybridizations and give ex-

amples for DMFT, CDMFT, and DCA. In Sec. IV we discuss

how the symmetry of the cluster naturally leads to a decom-

position of the bath Green matrix into irreducible compo-

nents, which can be parametrized independently. We give an

explicit recipe for finding the optimal bath-parametrization

and discuss how this approach relates to the technique of

cluster replica. In Sec. V we analyze how the cluster ap-

proaches work for the Hubbard chain and carefully re-

examine the evolution of the density as a function of chemi-

cal potential. In Sec. VI we give our conclusions and an

outlook.

II. METHOD AND NOTATION

We consider the Hubbard model

H = − �
ij�

tijci�
†

c j� + U�
i

ni↑ni↓. �1�

To fix the notation we briefly sketch the self-consistency

loop for cellular DMFT and the dynamical cluster approxi-

mation using, e.g., exact diagonalization as impurity solver.

Let Nc be the number of cluster sites, Nb the number of bath

sites. For simplicity we suppress spin indices.

Given an Nc�Nc bath Green matrix G−1,

�1� Fit parameters of an Anderson model with Nb bath

sites
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GAnd
−1 ��� � � + � − Hc − ��� − E�−1�† �2�

to G−1, where � is the Nc�Nb-dimensional hybridization

matrix, and E the Nb�Nb-dimensional bath-matrix. Hc is

specified below,

�2� Solve the Nc+Nb-site Anderson model HAnd �specified

below� to obtain the Nc�Nc cluster Green matrix Gc,

�3� Get the cluster self-energy matrix

�c��� = G−1��� − Gc
−1��� , �3�

�4� Calculate the local Green matrix for the cluster by

integrating over the reduced Brillouin-zone of the cluster

G��� =� dk̃�� + � − H�k̃� − �c����−1, �4�

where H�k̃� is the single-electron part of the of the Hubbard

Hamiltonian �1� in the reduced Brillouin-zone of the cluster,

�5� Determine the new bath Green matrix �self-

consistency condition�

G−1��� = �c��� + G−1��� . �5�

These steps are iterated to self-consistency.

The Anderson model to be solved in step 2 is given by

HAnd = Hclu + �
lm,�

Elm,�al�
†

am� + �
li,�

�il�al�
†

ci� + H.c.� , �6�

where the operator al�
† creates an electron of spin � on bath-

site l. The cluster Hamiltonian Hclu is obtained from the

original Hamiltonian �1� by transforming to the reciprocal

space of the superlattice of clusters, and projecting to the

cluster. Writing the single-electron part of H�k̃� as the matrix

H�k̃�, the single-electron part of Hclu is given by

Hc =� dk̃H�k̃� . �7�

The interaction terms are simply those of Eq. �1�, restricted

to the cluster.

The Hamiltonian H�k̃� in the reciprocal space of the su-

perlattice �r̃	 of clusters can be obtained by changing to the

basis of operators

c̃Ri,�
CDMFT�k̃� = �

r̃

e−ik̃r̃cr̃+Ri,�
. �8�

The resulting quantum cluster approximation is CDMFT. Al-

ternatively, we can start from the operators in the reciprocal

space of the lattice to obtain

c̃Ri,�
DCA�k̃� = �

r̃

e−ik̃�r̃+Ri�cr̃+Ri,�
. �9�

Now we obtain the DCA. The choice of the operators in the

two approaches differs just by local phase factors. In

CDMFT this gauge14 is chosen such that phases appear only

in matrix elements involving different clusters. Thus all ma-

trix elements on the cluster are the same as in the original

Hamiltonian. The price for retaining the original matrix ele-

ments on the cluster is a breaking of the translation symme-

try of the original lattice. DCA opts instead to retain this

symmetry by distributing the phase change uniformly over

the cluster sites. The price for retaining translation invariance

is that the matrix elements in the cluster Hamiltonian differ

from those in the original Hamiltonian �coarse graining�. In

both cases, CDMFT and DCA, the eigenvalues of H�k̃� are

identical to the eigenvalues of the noninteracting part of H

III. HYBRIDIZATION SUM-RULES

While the most general parametrization for the bath is

given by expression �2�,4,11 we can always diagonalize the

hopping matrix E among the bath sites to obtain

GAnd
−1 ���l,Vl	;�� = � + � − Hc − �

l

VlVl
†

� − �l

. �10�

The hybridization matrix is then given by the tensor product

of the vectors Vl, where

Vl,i = �
m

�i,m�l,m �11�

and �l are the eigenvectors of E with eigenvalues �l.

To obtain sum-rules for the hybridizations, we write the

inverse of the bath Green matrix as

G−1��� = �c��� + 
� dk̃�� + � − H�k̃� − �c����−1�−1

.

Considering the limit �→	, expanding to order 1 /�2, using

Eq. �7�, and comparing to Eq. �10� we find

�
l

VlVl
† =� dk̃H2�k̃� − �� dk̃H�k̃�
2

. �12�

To illustrate this hybridization sum-rule we consider a repre-

sentative set of examples.

A. Single site

We consider a d-dimensional lattice with hoppings tn to

the zn nth-nearest neighbors. For Nc=1 we have H�k�=�k.

Thus we find for the hybridizations

�
l

Vl
2 =

1

�2
�d� dk�k
2 = �

n

zntn
2, �13�

where the integral is just the second moment of the density

of states, so that the last equation follows as in the recursion

method.15 For a Bethe lattice of connectivity z with hopping

matrix element t /�z the sum-rule reduces to �lVl
2= t2.

B. CDMFT

We start by considering a linear chain with nearest-

neighbor hopping t and a three-site cluster Nc=3. In the

CDMFT gauge we have

H�k̃� = − t�
0 1 e−3ik̃

1 0 1

e3ik̃ 1 0
� �14�

so that Hc is the original single-electron Hamiltonian re-

stricted to the cluster:
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Hc =
3

2

�

−
/3


/3

dk̃H�k̃� = − t�
0 1 0

1 0 1

0 1 0
� . �15�

The sum-rule �12� then is

��
l

Vl,iV̄l,j� = �
t2 0 0

0 0 0

0 0 t2� , �16�

i.e., only the sites on the surface of the cluster couple to the

bath.

The general CDMFT hybridization sum-rule �12� can be

easily visualized. The integral over the Brillouin-zone of the

cluster projects the single-electron part of the full Hamil-

tonian to the cluster �see Eq. �7��. The matrix elements of Hc
2

are thus the two-step hoppings that are possible on the clus-

ter. Likewise the integral over the Hamiltonian squared gives

the second moments, only that here the intermediate site is

not restricted to the cluster. Thus the sum-rule matrix is

given by the second-order paths between cluster sites that

proceed via a site outside the cluster. This is illustrated in

Fig. 1. As a special case, for a single site we obtain the

second equality in Eq. �13�.
The vanishing of a matrix element in the sum-rule only

implies that the corresponding matrix element of the bath

Green matrix decays faster than 1 /� for large �. For a diag-

onal element, however, all terms in �lVl,iV̄l,i are positive.

Thus a vanishing sum means that all terms must be zero.

Hence the sum-rule implies that cluster sites that are so far in

the interior that they cannot be reached by hopping from

outside the cluster do not couple to bath and that all matrix

elements of the bath Green function involving such a site i

are given by Gij
−1���=�+�− �Hc�ij for all �. In that sense

the bath hybridizes only to the surface of the cluster and we

see that the hybridization strength to these sites does not

decrease for increasing cluster size Nc.

C. DCA

We start again by considering the three-site cluster. In the

DCA gauge we write

H�k̃� = − t�
0 eik̃ e−ik̃

e−ik̃ 0 eik̃

eik̃ e−ik̃ 0
� . �17�

Now Hc has translation symmetry, but the hopping matrix

element is rescaled by sin�
 /Nc� / �
 /Nc�:

Hc =
3

2

�

−
/3


/3

dk̃H�k̃� = −
3�3

2

t�

0 1 1

1 0 1

1 1 0
� . �18�

Since all matrices in Eq. �12� are periodic, it is convenient to

transform to k space. With Vl,K=�iVl,ie
iKri /�Nc and the

coarse-graining factor �=3�3 /2
 we find

�
l

�Vl,K=0�2 = �2 + � − 4�2�t2.

�
l

�Vl,K=�2
/3�2 = �2 − �/2 − �2�t2.

The hybridization sum-rule �12� is then, likewise, diago-

nal in the cluster-momenta K

�
l

�Vl,K�2 =� dk̃�
K+k̃

2
− �� dk̃�K+k̃�2

, �19�

while all terms Vl,KV̄l,K�
mixing different cluster momenta

vanish. As a special case, for a single site the above sum-rule

is just the first equality in Eq. �13�. Expanding �K+k around

K, we find that for a d-dimensional system �l�Vl,K�2 de-

creases with cluster size as 1 /Nc
2/d, while all cluster-sites

couple with the same strength to the bath.16

D. Discussion

From the sum-rules we recover7 that the individual hy-

bridizations in CDMFT are independent of cluster size, while

for DCA they decrease with cluster size as Nc
−2/d. Interest-

ingly this means that for a d-dimensional system in CDMFT

the overall coupling to the bath scales as Nc
�d−1�/d, while in

DCA it scales as Nc
�d−2�/d. For nonlocal properties a DCA

calculation is therefore expected to converge faster with clus-

ter size.17 For a calculation where we represent the bath by

discrete degrees of freedom this decrease in hybridization

strength does, however, not help very much as we still need

bath sites to fit the hybridizations, even if they are small.

With increasing DCA cluster size we thus have to param-

etrize Nc baths, one for each K. In CDMFT the situation is

more fortunate, as the sum-rules imply that many hybridiza-

tions vanish and we only need to parametrize the coupling of

surface sites to the bath.

The lack of translational invariance in CDMFT has two

important practical implications. First, the full Green matrix

has to be calculated, instead of just its diagonal. Second,

FIG. 1. CDMFT sum-rules for a one-dimensional three-site

cluster and nearest and next-nearest-neighbor hoppings t and t�,

respectively: �a� �l�Vl,1�2= t2+ t�
2, �b� �lV̄l,1Vl,2= tt�, and �c�

�l�Vl,2�2=2t�
2. The hybridizations are given by the two-step hop-

ping processes that are lost when cutting the cluster out of the

original lattice.
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when calculating local quantities, like the density per site, in

CDMFT we have a choice of inequivalent sites, or we could

consider the average over all sites. In a gapped system the

best choice is the innermost site,18 however, in such a situa-

tion it might be better to do a straight Lanczos calculation

with Nc+Nb cluster sites, instead of using Nb bath sites.19

IV. SYMMETRIES

In the absence of spontaneous symmetry breaking the

symmetries of the cluster �point symmetries in CDMFT and

additionally translation symmetry in DCA� are reflected in

the Green matrix. In a symmetry broken state with long-

range order, such as an antiferromagnet or a charge-density

wave, the symmetry of the Green matrix is accordingly low-

ered. To exploit this symmetry we introduce vectors on the

cluster that transform according to its irreducible representa-

tions. We write these vectors as wI,
 where I is the irreduc-

ible representation and 
=1. . .NI counts linear independent

vectors transforming according to I. On an Nc-site cluster we

can choose Nc such vectors that are orthonormal. Defining

the matrix W= �wI,
� of these vectors, we can block diago-

nalize the bath Green matrix: W†G−1W has blocks of dimen-

sion NI corresponding to the different irreducible representa-

tions I. Since W†G−1W is block diagonal for all �, it follows

from Eq. �10�, that W must also block diagonalize the indi-

vidual hybridization matrices VlVl
†. Therefore the hybridiza-

tion vectors must transform according to an irreducible rep-

resentation; they can be written as Vl=�
Vl;I,
wI,
 for some

irreducible representation I. If the Vl also had components

wJ,
 of a different irreducible representation J� I this would

produce a hybridization matrix that could not be block di-

agonalized.

We thus find that the bath sites can be arranged into sets

corresponding to the different irreducible representations.

For fitting a block of the symmetrized bath Green matrix we

need then only consider bath sites of the respective irreduc-

ible representation. If the block is one dimensional we can

choose the corresponding hybridization real. An early ex-

ample is the bonding-antibonding transformation introduced

in Ref. 20.

A. CDMFT

As an example we consider a linear cluster of 3 sites as

shown in Fig. 2. The symmetry is C2 �see Table I�. Trans-

forming to the basis vectors wA,1= ��1�+ �3�� /�2 and wA,2

= �2� of symmetry A �see Table I� and wB= ��1�− �3�� /�2, we

find the transformed bath Green matrix

W†G−1W = �
G11

−1 + G13
−1 �2G12

−1 0

�2G21
−1

G22
−1

0

0 0 G11
−1 − G13

−1� .

A bath site of irreducible representation A contributes to the

first block and has the same hybridization VA,1 to the outer

cluster-sites plus an independent hybridization parameter

VA,2 to the central site. A bath site of irreducible representa-

tion B contributes to the second block. For such a bath site

the hybridization to cluster sites that are related by mirror

symmetry have opposite signs. Consequently, the hybridiza-

tion to the central site vanishes.

The situation is slightly more complicated when the sym-

metry group has irreducible representations of dimension

higher than one. The simplest example is the 2�2 cluster

with C4v
symmetry. With wA1

= ��1�+ �2�+ �3�+ �4�� /2, wB2

= ��1�− �2�+ �3�− �4�� /2, and the pair wE,1= ��1�− �2�− �3�
+ �4�� /2, wE,2= ��1�+ �2�− �3�− �4�� /2 we find that W†G−1W

is diagonal with diagonal elements

�W†G−1W�11 = G11
−1 + 2G12

−1 + G13
−1

�W†G−1W�22 = G11
−1 − 2G12

−1 + G13
−1

�W†G−1W�33 = G11
−1 − G13

−1

�W†G−1W�44 = G11
−1 − G13

−1.

A bath site of symmetry A1 has the same hybridization to all

cluster sites while for a bath-site of symmetry B2 the hybrid-

izations have alternating signs: Vl
†= V̄l�1,−1,1 ,−1�. To real-

ize the two-dimensional representation E we need two bath

A
VA1
VA,2
VA,1

B
VB
0

-VB

FIG. 2. Hybridization of bath-sites of symmetry A and B to a

three-site cluster. As defined in Table I, A is the unit representation,

so a bath site of type A has the same hybridization V to all cluster

sites that are equivalent by symmetry. B is the antisymmetric rep-

resentation, so the hybridization of a bath site of type B to cluster

sites that are related by mirror symmetry have the opposite sign.

Consequently the hybridization to the central site of a linear cluster

with an odd number of sites vanishes in the B representation.

TABLE I. Character tables of the point groups C2, C3v
, and

C4v
.

C2 E σv

A 1 1

B 1 −1

C3v E 2C3 3σv

A1 1 1 1

A2 1 1 −1

E 2 −1 0

C4v E 2C4 C2
4

2σv 2σd

A1 1 1 1 1 1

A2 1 1 1 −1 −1

B1 1 −1 1 1 −1

B2 1 −1 1 −1 1

E 2 0 −2 0 0
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sites l1 and l2 with degenerate energies �l1
=�l2

=�l and hy-

bridizations: Vl1

† = V̄l�1,−1,−1,1� and Vl2

† = V̄l�1,1 ,−1 ,−1�.
This is illustrated in Fig. 3.

B. DCA

As an example for DCA we consider a three-site cluster

with periodic boundary conditions. The symmetry group is

C3v
�translations and inversion�. Hence we introduce the ba-

sis vector wA1
= ��1�+ �2�+ �3�� /�3, corresponding to k=0,

while the vectors formed by sin�2
 /3� and cos�2
 /3� give

the E representation: wE,1= ��1�− �2�� /�2 and wE,2= ��1�+ �2�
−2�3�� /�6

W†G−1W = �
G11

−1 + 2G12
−1

0 0

0 G11
−1 − G12

−1
0

0 0 G11
−1 − G12

−1� .

In general bath sites corresponding to the gamma point have

the same hybridization to all cluster sites, while those corre-

sponding to k=
 have alternating hybridizations. For all

other k points we need two degenerate bath sites, with hy-

bridizations Vl1,�=Vl sin�k�� and Vl2,�=Vl cos�k�� to cluster

site �.

C. Cluster replica

Instead of implementing the symmetry of the Green ma-

trix as described above, one might construct the bath out of

replica of the Nc-site clusters.13 For a two-site cluster this

means that bath sites come in pairs, with on-site energy �̃,

hopping −t̃ between the bath-sites, and hybridization Ṽ11 and

Ṽ12 to the cluster as illustrated in Fig. 4. Diagonalizing such

a bath pair, we obtain one bath site of symmetry A with

on-site energy �A= �̃− t̃ and hybridization VA= �Ṽ11

+ Ṽ12� /�2 and one bath site of symmetry B with �B= �̃+ t and

VB= �Ṽ11− Ṽ12� /�2.

To generalize this approach, let H̃b be the Hamiltonian for

an Nc-site cluster with general on-site energies and hoppings

that respect the symmetry of the Green matrix. Furthermore

let bath site n hybridize to cluster site i with Ṽni. These

hybridizations are chosen symmetric under simultaneous

symmetry transformations of the original cluster and the bath

replica. Diagonalizing H̃b we obtain Nc eigenstates �l with

energy �l. These can be considered as bath sites that hybrid-

ize to cluster site i with Vl,i=�n�l,nṼn,i.

Being the eigenstates of the Hamiltonian H̃b, the �l trans-

form according to the irreducible representations of the sym-

metry of the Green matrix.21 Therefore they can be written as

linear combination �l=�
�l;I,
wI,
 for some irreducible rep-

resentation I. From this we can conclude that a cluster replica

gives rise to NI bath sites of symmetry I. By working with

cluster replica we thus sacrifice the freedom of choosing the

irreducible representations for the bath individually. More-

over, it is not straightforward to find a proper parametriza-

tion. H̃b must be chosen such that all accidental degeneracies

can be lifted. For symmetries with higher-dimensional irre-

ducible representations there will be, however, correspond-

ing essential degeneracies. Moreover, working with cluster

replica, we cannot fit the individual blocks of the bath Green

matrix with the minimal set of symmetry-adapted param-

eters, but have to solve the optimization problem for the full

bath Green matrix and all parameters. Thus, using cluster

replica is less flexible than using individual irreducible rep-

resentations and it leads to a more complicated fitting proce-

dure, in particular when considering large baths.

V. HUBBARD CHAIN

We now discuss the one-dimensional Hubbard model, for

which exact results are available from the Bethe ansatz22 and

which has been studied with CDMFT using Lanczos11–13

and quantum Monte Carlo,23 as well as with the variational

cluster approximation.24 Here going from single-site DMFT

to a cluster description makes a qualitative difference; for a

paramagnetic single-site calculation antiferromagnetism is

completely suppressed, while on a cluster we will have

short-ranged antiferromagnetic correlations, even if we im-

pose a paramagnetic bath.

This inclusion of antiferromagnetic correlations might

well be the cause for the spectacular difference between the

single-site and two-site CDMFT calculations of the density

as a function chemical potential reported in Ref. 12. For

illustration, in Fig. 5, we compare the density as a function

A
1

B
2

E

+ +

+ +

– +

+ –

+ –

+ –

– –

+ +

FIG. 3. Hybridization of bath sites of symmetry A1, B2, and E to

a 2�2 cluster. For a given irreducible representation the absolute

value of the hybridization to all cluster-sites is the same, while the

signs are indicated in the figure. Nontrivial hybridizations corre-

sponding to irreducible representations A2 or B1 only appear for

larger clusters.

V
~

11

V
~

12

V
~

12
t..
~

ε
~

ε
~

V
~

11

FIG. 4. Replica of a two-site cluster in the bath. Diagonalizing

the Hamiltonian for the two bath sites leads to a bath-site of type A

�even representation� with energy �A= �̃− t̃ and hybridization VA

= �Ṽ11+ Ṽ12� /�2 and a site of type B with �B= �̃+ t and VB= �Ṽ11

− Ṽ12� /�2.
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of the chemical potential for a single-site calculation with

paramagnetic and antiferromagnetic bath.25 They represent

two limiting cases, the former being always metallic, the

latter yielding a gap, which is overestimated as we are using

an antiferromagnetic bath to mimic the short-ranged correla-

tions present in the Hubbard chain.

A. Bath Green matrix

For a one-dimensional lattice the CDMFT bath Green ma-

trix simplifies drastically: When removing the Nc-site cluster

from the lattice, we are left with two disconnected pieces.

Thus a vanishing sum-rule �12� in one dimension means that

the hybridization matrix vanishes for all frequencies. For the

irreducible representations of the bath this means that bath

sites of symmetry A and B come in degenerate pairs: �Al

=�Bl
and VAl

=VBl
. Thus for the Hubbard chain with nearest-

neighbor hopping only the outer-most cluster sites hybridize

with the bath and the bath parametrizations are identical by

symmetry.13 The evolution of the bath Green matrix element

G11
−1 with cluster size is shown in Fig. 6. We find that the bath

Green matrix elements hardly depend on cluster size and

even for a single-site calculation the bath is already similar

to that for a large cluster.

In contrast, in the DCA we get a nonvanishing hybridiza-

tion for each K point of the cluster. This is shown in Fig. 7.

While the hybridization strength per K point decreases with

cluster size, we still have to parametrize all of them, possibly

except for K=0 and 
, which almost vanish already for mod-

erate cluster sizes.

B. Fitting the bath Green matrix

The most critical step in calculations with a finite bath is

the determination of the parameters for the impurity Hamil-

tonian �6�. This is usually done by fitting the bath Green

function on the imaginary axis; a fictitious temperature 1 /�
is introduced and the sum of the squared difference between

G and its parametrized version �Eq. �10�� over the Matsubara

frequencies up to some cutoff is minimized.2 This procedure

is fairly robust if the number of bath sites is sufficiently

large. For cluster calculations the number of effective bath

sites per fitted bath Green function can, however, be quite

small. In such a situation details of the fitting procedure are

important and are accordingly discussed in the

literature.11–13,28–30

To fit the Anderson parameters Vl and �l we use the dis-

tance function

�
0��n��cut

�W†�G−1�i�n� − GAnd
−1 ���l,Vl�;i�n�	W�

I

�n
N

,

where � · �
I is the 1-norm for the block of irreducible repre-

sentation I and N determines how strongly large Matsubara

frequencies �n are weighted. The distance function will only

be finite in the limit �cut→	 if the sum-rules are fulfilled

exactly, or if N�2. Thus for N�2 increasing the cutoff em-

phasizes the sum-rules. The same is true for decreasing �. If

the distance function is dominated by the large frequency

asymptotics, the optimization mainly focuses on just the

sum-rules. This means that in practice the Anderson param-

eters can become under determined. Since the fictitious tem-

perature is only used for fitting, while the calculations are

actually for T=0 there is a strong dependence of the physical

quantities on the Anderson parameters. Hence for small � the

self-consistent results strongly differ for different initial

Anderson parameters. This is illustrated in Fig. 8. Interest-

ingly, the situation is opposite to calculation at finite tem-

perature, where at higher temperature the physical quantities

become less dependent on the details of the fitting.31
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FIG. 5. �Color online� Density as a function of chemical poten-

tial for a Hubbard model on the Bethe lattice with half band width

D and U=2D in single-site DMFT with paramagnetic �para� and

antiferromagnetic �AF� bath �blue squares and red circles, respec-

tively�. The AF curve comprises a left and a right branch: the left

one has been obtained by fixing the magnetization from 0.01 to 0.82

�from left to right� and determining the chemical potential. The

right branch has been obtained by just decreasing the chemical po-

tential from the half-filling value ��=U /2� down to the point where

convergence is no longer found ��=0.6�. The magnetization in the

right branch is about 0.85. In the inset we compare the total energy

of the AF and para phases as a function of doping. The AF phase is

the stable one up to about �=0.2. We have added �U /2−EAF�0� to

E��� to allow better comparison with Fig. 1 of Ref. 26 and Fig. 8 of

Ref. 27.
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FIG. 6. �Color online� Plot of the CDMFT bath Green function

G11
−1���− ��+�� on the real axis for linear clusters with nearest-

neighbor hopping t. Increasing the size of the cluster the hybridiza-

tion hardly changes. The plots show calculations for chains with

U=6t and �=0.5t.
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To avoid an under determination of the Anderson param-

eters, it is important to ensure that the features of the bath

Green matrix close to the real axis are properly weighted in

the distance function. This was already pointed out in Ref.

12. We find that a good compromise between fitting the

large- and small-frequency behavior is given by �=256 / t,

N=1, and �cut=200t, which, if not explicitly specified other-

wise, is used in the calculations reported in this work.

C. Convergence with number of bath-sites

To check how many bath sites we need to reach a satis-

factory fit of the bath Green matrix, we consider a two-site

cluster for increasing Nb. As example we show in Fig. 9 the

density for �=0. For CDMFT we find that we need at least

eight bath sites to obtain a converged density. Also for DCA

we obtain convergence for Nb=8. Both these results translate

to four bath sites per nonvanishing element of the bath Green

matrix. It is interesting to note that DCA converges to a

density above the Bethe-ansatz result. This could be an arti-

fact of the two-site cluster, for which the coarse-grained hop-

ping is larger than t, because for periodic boundary condi-

tions the hopping on the cluster and across the boundary add

up. Averaging over different choices of boundary conditions
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FIG. 7. �Color online� Plot of the DCA bath Green functions GK
−1���− ��+�−�dk̃�K+k̃� on the real axis for linear clusters with

nearest-neighbor hopping t. Increasing cluster size �Nc=2, 4, 6, and 8 from top to bottom� the number of independent functions to fit

increases. Note that K=0 and K=
 are associated with single bath-sites, while all the other K points need to be described by pairs of bath

sites. From the figures it is clear how the total spectral weight decreases with increasing Nc. The plots show calculations for chains with

U=6t and �=0.5t.
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but constant cutoff �cut�200t and N=0 and 1, starting from differ-

ent Anderson parameters. For low fictitious temperature results are

fairly independent of the starting points, while for larger tempera-

ture the Anderson parameters are essentially under determined by

the distance function and consequently the results of the supposedly

self-consistent calculation strongly depend on the initial values.
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or going to a larger cluster might improve the situation.32

Checking the hybridization sum-rule for the diagonal ele-

ments of the bath Green matrix, we find that the density is

already converged while the sum of the hybridizations �l�Vl�2

is only at about 70% of its exact value. As shown in Fig. 10

we need to go to even larger baths to properly fulfill the

sum-rule. We tried also to fit the bath Green matrix imposing

the sum-rule, i.e., fixing one Anderson parameter per irreduc-

ible representation. We found, however, that for small Nb this

does not give particularly good results, as it weights the large

frequency behavior of the bath Green matrix too strongly,

while for large Nb it is not necessary.

Going to larger clusters, we expect that we will need more

bath sites for a converged calculation. A notable exception is

CDMFT for the linear chain with nearest-neighbor hopping

only. As discussed above, in this case there are two identical

baths coupling to one surface site each. Since the bath Green

function that these baths have to fit is fairly independent of

cluster size �see Fig. 6� we expect that the number of bath

sites needed for convergence is independent of cluster size.
D. Convergence with number of cluster sites

We now analyze the convergence of CDMFT with the

number of cluster sites Nc. As before we focus on the density

on the cluster n, which is shown in Fig. 11 for U=4t and

chemical potential �=0 and �= t. Considering the series of

odd or even Nc separately, we see that with increasing cluster

size the average density systematically approaches the exact

result for the infinite chain. Interestingly, going from a clus-

ter with an even number of sites Nc to Nc+1 the average

density hardly changes. For both chemical potentials already

the smallest cluster gives a significant improvement over a

single-site calculation. For �=0 the exact density is basically

obtained for Nc=2. For �= t convergence to the infinite-

chain result is only reached at Nc=6.

In Fig. 12 we show how the density versus chemical-

potential curve for CDMFT calculations of increasing cluster

size approach the exact result for the infinite Hubbard chain.

We find that the closer we come to the metal-insulator tran-

sition the harder it gets to reach the infinite-size limit. This

does not come as a complete surprise, as the self-energy is
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FIG. 9. �Color online� Density as a function of the number of

bath-sites Nb for a two-site cluster for U=4t and �=0. To give a

measure of the reproducibility of the results, we plot the densities of

several converged CDMFT and DCA runs �multiple symbols at the

same Nb�.
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FIG. 10. �Color online� Fraction of hybridization sum-rule for a
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added, the exact hybridization sum-rule is approached. Shown is the

percentage of the sum-rule for irreducible representation A in CD-
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FIG. 11. �Color online� Density for linear CDMFT clusters of
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calculations are for Nb=8. Circles denote the average density per

cluster site. �Green� Open squares are the individual cluster-site
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calculation we show for each even value of Nc the result of at least
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son parameters. The dotted line represents the exact Bethe-ansatz

result.
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expected to become strongly k dependent at the Mott
transition.33,34

We note that our results for Nc=2 agree with Fig. 4.7 of

Ref. 13. They are not compatible with Fig. 4.1 of Ref. 13 and

Fig. 2 of Ref. 12. We have checked that our calculation is

properly converged by starting from a number of different

initial points, always converging to essentially the same den-

sity. To achieve this, for chemical potentials ��1.3t we in-

creased � from 256 / t to 512 / t, in line with the trend shown

in Fig. 8. We can, however, get significant variations in the

density by putting restrictions on the bath parametrization.

Using, e.g., only six bath sites, the CDMFT result happens to

be closer to the one for the infinite system, in the vicinity of

the Mott transition.13 This is shown in Fig. 13. For small

baths the calculated density is very sensitive to Nb and can be

either larger or smaller than the density for the infinite chain.

For such small baths results will therefore critically depend

on the fitting. We can, e.g., artificially “improve” the result

by forcing a pair of bath energies to zero. Other restrictions

on the bath parameters instead move the densities further

away from the Bethe curve. In all these cases we find that the

restricted bath-parametrization results in a significantly dete-

riorated fit of the bath Green matrix. That is, the sensitivity

of these calculations to technical details merely shows the

effects of an inadequate fitting of the bath Green matrix. By

increasing Nb, the bath-parametrization improves and the cal-

culated density converges, as shown in Fig. 13. Nevertheless,

differently from the behavior at smaller chemical potential

�cf. Fig. 9�, the converged value is substantially smaller than

the Bethe ansatz one. As this does not improve much with

increasing Nc, we can conclude that the clusters are still too

small to accurately capture the behavior of the infinite sys-

tem close to the Mott transition.

VI. CONCLUSIONS

The central problem of dynamical mean-field calculations

with a solver that uses a small number of sites is to find a

good parametrization of the bath. To address this problem for

dynamical cluster approximations we have presented a sys-

tematic formulation for the bath degrees of freedom. We

have found sum-rules which allow to identify what hybrid-

izations vanish and hence need not be parametrized at all. In

addition the sum-rules can be used to check convergence for

small baths. For the nonvanishing hybridization functions,

we have introduced a bath-parametrization based on the irre-

ducible representations of the cluster Green matrix. In this

approach the fitting of the bath sites is broken into indepen-

dent fits of irreducible blocks of the Green matrix. This leads

to a significant simplification of the fitting procedure which

is particularly important when dealing with large baths. The

symmetry-based approach should also benefit the variational

cluster approximation,24 where the determination of the pa-

rameters requires a Lanczos calculation in each optimization

step.

As an application we have revisited the Hubbard chain.

While this one-dimensional problem is the worst case sce-
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FIG. 12. �Color online� Density n as a function of chemical

potential � at U=4t for linear CDMFT clusters of increasing size

and Nb=8 compared to the exact result for an infinite Hubbard

chain �Bethe Ansatz�. The crosses give the results from Fig. 4.7 of

Ref. 13. The inset shows how the convergence of the density with

increasing cluster size to the Bethe result becomes progressively

slower close to the Mott transition. nBA−nCDMFT jumps when the

self-consistent solution changes sector �N↑ ,N↓�. Close to these sec-

tor changes the results slightly depend on the initial conditions, i.e.,

there is a hysteresis between calculations increasing or decreasing

�. This is shown as multiple symbols for a given chemical poten-

tial. The upper plot shows the average density for two-, four-, and

six-site clusters, the lower plot the density on the two central sites.
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nario for DMFT, which is exact in infinite dimensions, it is

technically the easiest case for CDMFT, because it requires

only a minimal bath which is essentially independent of clus-

ter size. This allowed us to study the results of CDMFT

using linear clusters of increasing size, extending previous

work that was limited to two- and three-site clusters.12,13

Analyzing the density as a function of chemical potential, we

find that results significantly improve already going from a

single-site DMFT to a two-site cluster and become system-

atically better for larger and larger cluster sizes. Close to the

Mott transition the convergence with Nc critically slows

down, implying that the k dependence of the self-energy gets

more and more important.

The fortuitous independence of the CDMFT bath on the

cluster size for the Hubbard chain is lost in higher dimen-

sions. Already for a cluster as small as 2�2 we have to fit

three functions, one of which belongs to a doubly degenerate

E representation. In that case Nb=8 translates to only two

effective bath sites per bath Green function and the fit in

general becomes very poor, as illustrated in Fig. 14, except in

special cases like large U at half-filling. For comparison, in

our one-dimensional calculations we need at least four bath

sites per bath Green function for a converged bath, implying

that it is extremely hard to converge a 2�2 CDMFT calcu-

lation with a Lanczos solver.

The same is true for DCA, since the number of baths

increases with cluster size, independently of the cluster or the

nature of the hopping. Nevertheless, it might help somewhat

that these baths appear to be easier to fit as suggested by Fig.

7. Still, for zero-temperature cluster calculations it seems

necessary to move to impurity solvers that can handle large

baths, e.g., DMRG.35 For these calculations with large baths

the efficient parametrization of bath and fitting of irreducible

blocks will become even more important.

ACKNOWLEDGMENTS

We would like to thank M. Capone for inspiring the
present systematic treatment of CDMFT and for important
discussions in the early stage of the work. M. Civelli kindly
shared with us many details from his PhD thesis. A. Parola
and S. Sorella provided us with the density curve for the
Bethe Ansatz solution. We also acknowledge useful discus-
sions with C. Castellani, M. Hettler, M. Jarrell, S. Kancharla,
G. Kotliar, A.I. Lichtenstein, I. Mazin, M. Potthoff, S. Sakai,
and A. Toschi. S.G. thanks the Forschungszentrum Jülich for
hospitality. Calculations were performed in Jülich on the

JUMP computer under Grant No. JIFF22.

1 W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 �1989�;
M. Jarrell, ibid. 69, 168 �1992�; M. J. Rozenberg, X. Y. Zhang,

and G. Kotliar, ibid. 69, 1236 �1992�; A. Georges and W.

Krauth, ibid. 69, 1240 �1992�; M. Caffarel and W. Krauth, ibid.

72, 1545 �1994�.
2 A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev.

Mod. Phys. 68, 13 �1996�.
3 M. H. Hettler, A. N. Tahvildar-Zadeh, M. Jarrell, T. Pruschke,

and H. R. Krishnamurthy, Phys. Rev. B 58, R7475 �1998�; M.

H. Hettler, M. Mukherjee, M. Jarrell, and H. R. Krishnamurthy,

ibid. 61, 12739 �2000�.
4 A. I. Lichtenstein and M. I. Katsnelson, Phys. Rev. B 62, R9283

�2000�.
5 G. Kotliar, S. Y. Savrasov, G. Pálsson, and G. Biroli, Phys. Rev.

Lett. 87, 186401 �2001�; G. Biroli and G. Kotliar, Phys. Rev. B

65, 155112 �2002�.
6 M. Potthoff, Eur. Phys. J. B 32, 429 �2003�; M. Potthoff, M.

Aichhorn, and C. Dahnken, Phys. Rev. Lett. 91, 206402 �2003�.
7 T. Maier, M. Jarrell, T. Pruschke, and M. H. Hettler, Rev. Mod.

Phys. 77, 1027 �2005�.

8 A. Toschi, A. A. Katanin, and K. Held, Phys. Rev. B 75, 045118

�2007�.
9 H. Hafermann, S. Brener, A. N. Rubtsov, M. I. Katsnelson, and

A. I. Lichtenstein, JETP Lett. 86, 677 �2007�.
10 M. Jarrell, T. Maier, C. Huscroft, and S. Moukouri, Phys. Rev. B

64, 195130 �2001�; T. A. Maier, M. Jarrell, T. C. Schulthess, P.

R. C. Kent, and J. B. White, Phys. Rev. Lett. 95, 237001 �2005�.
11 C. J. Bolech, S. S. Kancharla, and G. Kotliar, Phys. Rev. B 67,

075110 �2003�.
12 M. Capone, M. Civelli, S. S. Kancharla, C. Castellani, and G.

Kotliar, Phys. Rev. B 69, 195105 �2004�.
13 M. Civelli, Ph. D. thesis, Rutgers University �2006�.
14 W. Kohn, Phys. Rev. 133, A171 �1964�.
15 R. Haydock, V. Heine, and M. J. Kelly, J. Phys. C 5, 2845

�1972�.
16 Th. Maier, M. Jarrell, Th. Pruschke, and J. Keller, Eur. Phys. J. B

13, 613 �2000�.
17 K. Aryanpour, T. A. Maier, and M. Jarrell, Phys. Rev. B 71,

037101 �2005�.
18 G. Biroli and G. Kotliar, Phys. Rev. B 71, 037102 �2005�.

-1.5

-1

-0.5

0

0 5 10

ωn

A1

0 5 10

ωn

B2

fit for N=1

ImG
-1
0 (N=1)

fit for N=0

ImG
-1
0 (N=0)

0 5 10

ωn

E

FIG. 14. �Color online� Fitting the bath Green function for a 2

�2 cluster in CDMFT with U=12t, �=0, Nb=8. The imaginary

part of the block-diagonalized bath Green matrix �shown are only

the three inequivalent blocks labeled by the irreducible representa-

tion� and its corresponding fit are plotted for two values of the

exponent N �cf. Sec. V B�. The quality of the fit is clearly very poor

in both cases �for N=1 compare full red/gray line with full black

one and for N=0 compare dashed green/gray line with dashed black

one�.

KOCH, SANGIOVANNI, AND GUNNARSSON PHYSICAL REVIEW B 78, 115102 �2008�

115102-10



19 E. Koch and S. Goedecker, Solid State Commun. 119, 105

�2001�.
20 V. V. Mazurenko, A. I. Lichtenstein, M. I. Katsnelson, I. Das-

gupta, T. Saha-Dasgupta, and V. I. Anisimov, Phys. Rev. B 66,

081104�R� �2002�.
21 In case of accidental degeneracies, we can always symmetrize

the degenerate eigenstates.
22 E. H. Lieb and F. Y. Wu, Phys. Rev. Lett. 20, 1445 �1968�.
23 B. Kyung, G. Kotliar, and A. M. S. Tremblay, Phys. Rev. B 73,

205106 �2006�.
24 M. Balzer, W. Hanke, and M. Potthoff, Phys. Rev. B 77, 045133

�2008�.
25 G. Sangiovanni, A. Toschi, E. Koch, K. Held, M. Capone, C.

Castellani, O. Gunnarsson, S.-K. Mo, J. W. Allen, H.-D. Kim, A.

Sekiyama, A. Yamasaki, S. Suga, and P. Metcalf, Phys. Rev. B

73, 205121 �2006�; G. Sangiovanni, O. Gunnarsson, E. Koch,

C. Castellani, and M. Capone, Phys. Rev. Lett. 97, 046404

�2006�.
26 P. G. J. van Dongen, Phys. Rev. B 54, 1584 �1996�.

27 R. Zitzler, T. Pruschke, and R. Bulla, Eur. Phys. J. B 27, 473

�2002�.
28 B. Kyung, S. S. Kancharla, D. Sénéchal, A.-M. S. Tremblay, M.

Civelli, and G. Kotliar, Phys. Rev. B 73, 165114 �2006�.
29 M. Civelli, M. Capone, A. Georges, K. Haule, O. Parcollet, T. D.

Stanescu, and G. Kotliar, Phys. Rev. Lett. 100, 046402 �2008�.
30 Y. Z. Zhang and M. Imada, Phys. Rev. B 76, 045108 �2007�.
31 A. Toschi �private communication�.
32 M. Jarrell �private communication�.
33 M. Civelli, M. Capone, S. S. Kancharla, O. Parcollet, and G.

Kotliar, Phys. Rev. Lett. 95, 106402 �2005�.
34 T. D. Stanescu, M. Civelli, K. Haule, and G. Kotliar, Ann. Phys.

�N.Y.� 321, 1682 �2006�.
35 D. J. Garcia, K. Hallberg, and M. J. Rozenberg, Phys. Rev. Lett.

93, 246403 �2004�; S. Nishimoto, F. Gebhard, and E. Jeckel-

mann, J. Phys.: Condens. Matter 16, 7063 �2004�; M. Karski, C.

Raas, and G. S. Uhrig, Phys. Rev. B 72, 113110 �2005�; D. J.

Garcia, E. Miranda, K. Hallberg, and M. J. Rozenberg, ibid. 75,

121102�R� �2007�.

SUM RULES AND BATH PARAMETRIZATION FOR… PHYSICAL REVIEW B 78, 115102 �2008�

115102-11


