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We report a comprehensive joint experimental-theoretical study of the equilibrium pair-structure
and short-time diffusion in aqueous suspensions of highly charged poly-acrylate (PA) spheres in
the colloidal fluid phase. Low-polydispersity PA sphere systems with two different hard-core radii,
R0 = 542 and 1117 Å, are explored over a wide range of concentrations and salinities using static
and dynamic light scattering (DLS), small angle x-ray scattering, and x-ray photon correlation spec-
troscopy (XPCS). The measured static and dynamic scattering functions are analyzed using state-
of-the-art theoretical methods. For all samples, the measured static structure factor, S(Q), is in good
agreement with results by an analytical integral equation method for particles interacting by a repul-
sive screened Coulomb plus hard-core pair potential. In our DLS and XPCS measurements, we have
determined the short-time diffusion function D(Q) = D0 H(Q)/S(Q), comprising the free diffusion
coefficient D0 and the hydrodynamic function H(Q). The latter is calculated analytically using a self-
part corrected version of the δγ -scheme by Beenakker and Mazur which accounts approximately for
many-body hydrodynamic interactions (HIs). Except for low-salinity systems at the highest investi-
gated volume fraction φ ≈ 0.32, the theoretical predictions for H(Q) are in excellent agreement with
the experimental data. In particular, the increase in the collective diffusion coefficient Dc = D(Q
→ 0), and the decrease of the self-diffusion coefficient, Ds = D(Q → ∞), with increasing φ is well
described. In accord with the theoretical prediction, the peak value, H(Qm), of H(Q) relates to the
nearest neighbor cage size ∼2π /Qm, for which concentration scaling relations are discussed. The
peak values H(Qm) are globally bound from below by the corresponding neutral hard-spheres peak
values, and from above by the limiting peak values for low-salinity charge-stabilized systems. HIs
usually slow short-time diffusion on colloidal length scales, except for the cage diffusion coefficient,
Dcge = D(Qm), in dilute low-salinity systems where a speed up of the system dynamics and corre-
sponding peak values of H(Qm) > 1 are observed experimentally and theoretically. © 2012 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4751544]

I. INTRODUCTION

The existence of a large variety of well-characterized
colloidal model systems has triggered extensive research on
the dynamics of colloidal Brownian particles over the past
decades.1–5 This has led to a developed understanding of the
microstructure and the dynamics in fluid-like colloidal sus-
pensions. In the present paper, we report on our compre-
hensive study of aqueous suspensions of charge-stabilized
poly-acrylate (PA) spherical particles, which combines state-
of-the-art experimental with recently developed theoretical
methods. We have synthesized and investigated a large num-
ber of PA samples with different particle diameters and size
polydispersities, in a wide range of colloid volume fractions
and electrolyte concentrations, covering practically the com-
plete fluid-phase state. For the here discussed PA spheres with
mean radii of 542 and 1117 Å, the relevant length scales

a)fabian.westermeier@desy.de.
b)mheinen@thphy.uni-duesseldorf.de.

of the structural and dynamical features can be conveniently
accessed by static and dynamic light scattering (SLS/DLS),
provided that the samples are sufficiently dilute to avoid
multiple scattering. For the PA systems at higher concentra-
tions, where for visible light multiple scattering becomes non-
negligible, we have applied static and dynamic x-ray scat-
tering techniques using a partially coherent, third-generation
synchrotron source.6–8 These techniques have the advantage
of covering an extended scattering wavevector range. We
have analyzed our experimental results using the recently in-
troduced modified penetrating background-corrected rescaled
mean spherical approximation (MPB-RMSA)9, 10 method of
calculating the static pair-correlations, and using the self-part
corrected δγ -scheme11 for the short-time dynamics of con-
centrated charge-stabilized colloidal suspensions.

Both the strength and the range of the direct (i.e., non-
hydrodynamic) interactions in charge-stabilized colloidal sys-
tems are experimentally adjustable by varying the colloid vol-
ume fraction, φ, and the concentration of added salt-ion pairs,
ns (KCl in our case). The colloidal particles have a steric

0021-9606/2012/137(11)/114504/17/$30.00 © 2012 American Institute of Physics137, 114504-1
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excluded volume plus an exponentially screened electrostatic
repulsion, with the Debye screening length decreasing with
increasing φ and ns. At low particle concentrations and salin-
ities, the direct interactions are long-ranged, and near-contact
configurations of colloidal spheres are suppressed. At high
salinity, the electrostatic repulsion is fully screened. On ne-
glecting short-range van der Waals (vdW) attraction, the pair
potential reduces then to the hard-core potential describing
neutral hard-spheres.

In addition to direct electro-steric interactions, the dy-
namics of colloidal particles is influenced also by hydro-
dynamic interactions (HIs) that couple the motions of the
colloids through the low Reynolds-number flow of the sus-
pending viscous solvent. An accurate inclusion of HIs into a
theoretical scheme of (short-time) diffusion in concentrated
systems is a non-trivial task, due to the many-body character
of the HIs. As an additional complication for the theoretical
treatment, HIs are the longest ranged particle interactions, de-
caying asymptotically with the inverse inter-particle distance.

In suspensions of neutral colloidal hard spheres, HIs slow
the short-time diffusion on all colloidal length scales by an
amount that increases with increasing φ. For charged col-
loidal systems on the other hand, the interplay of electrostatic
repulsion and HIs gives rise to an intricate concentration-
scaling behavior of various diffusion coefficients. For exam-
ple, charge-stabilized colloidal suspensions at low salinity
have a collective diffusion coefficient, Dc, that varies non-
monotonically as a function of φ.12–16 Moreover, the col-
lective diffusive motion on the length scale of the nearest
neighbor cage diameter, as described by D(Qm), is enhanced
rather than slowed hydrodynamically at low-salt and low-φ
conditions.11, 17–25 The hydrodynamic effects described here
are analyzed in the present work both experimentally and
theoretically.

The static structure factor, S(Q), and the hydrodynamic
function, H(Q), predicted by our analytic theoretical methods
are shown to be in excellent agreement with our visible light-
and x-ray scattering results for all investigated salt concentra-
tions, and for all probed colloidal volume fractions up to φ

= 0.16. We demonstrate that the predictions of the self-part
corrected δγ -scheme for H(Q) and D(Q) become less accu-
rate for low-salinity suspensions at a large volume fraction of
φ = 0.32, indicating that a more refined analytical theoretical
scheme needs to be developed which covers also this high-
concentration regime.

The paper is organized as follows: In Sec. II, we de-
scribe our sample preparation, and our static and dynamic
visible light- and x-ray scattering experiments. In Sec. III,
the essentials of the theory of static and dynamic scattering
are presented, with focus on the underlying hard-sphere plus
repulsive Yukawa (HSY) pair potential model, and the em-
ployed theoretical methods for the statics and short-time dy-
namics. Section IV includes our experimental and theoreti-
cal results on the static scattering functions of the PA sphere
systems, and a discussion of the limiting concentration scal-
ing relations fulfilled by the nearest neighbor cage radius.
Section V compares our short-time dynamics experimental
scattering data to the corresponding theoretical predictions.
It includes also a discussion of the limiting concentration

scaling of the various diffusion coefficients of charged and
of effectively neutral colloidal spheres. Our conclusions are
presented in Sec. VI. An index of abbreviations and symbols
is given at the end of the paper.

II. EXPERIMENTAL DETAILS

A. Sample preparation

By means of radical emulsion polymerization,26 we have
synthesized two batches of PA spherical colloidal particles
with two different mean hard-core radii, R0 = 542 and
1117 Å. As explained in detail in Subsection IV A, we have
determined these mean radii, and the corresponding size-
polydispersities, from model fits to the small angle x-ray scat-
tering (SAXS) data. In the following, we refer to the two
batches as the PA542 and PA1117 systems.

To enhance the electron density and hence the scatter-
ing strength of the polymer particles, two different function-
alized monomers containing either fluorine or silicon atoms
(1H,1H,5H-octafluoropentylmethacrylate (ABCR GmbH &
Co. KG, Germany) and methacryloxymethyltrimethylsilane
(ABCR GmbH & Co. KG, Germany)) were used for the rad-
ical emulsion polymerization. The structural formulae of the
monomers are displayed in Fig. 1, the syntheses were per-
formed as described by Härtl.27 The reaction temperature of
57.5 ◦C was kept constant during the synthesis. A mixture
with a 1:1 molar ratio of the two monomers was added to a
water amount of 1.5 l, saturated with nitrogen to remove dis-
solved oxygen. In addition, the cross-linker 2,2,3,3,4,4,5,5-
octafluorohexanediol-1,6-dimethacrylate (ABCR GmbH &
Co. KG, Germany) was added to stabilize the formed nano-
particles. As a redox-system, a solution of NaSO3 (Fluka,
Switzerland) and (NH4)2Fe(SO4)2 (Fluka, Switzerland) in
deionized water was added. The polymerization was initial-
ized by adding a solution of the initiator K2S2O8 (Merck,
Germany) in deionised water.

For the PA1117 system, a subsequent synthesis step was
carried out at identical synthesis conditions 24 h after the
first synthesis step, resulting in a further growth of the parti-
cles. At the end of the synthesis, remnant monomer and low-
molecular-weight oligomers were removed by a 10–12 days
dialysis against deionized water. The purified colloidal sus-
pension was concentrated by vacuum distillation. Remaining
electrolyte ions were removed by a mixed-bed ion exchanger
(Merck, Germany).

In the experiments, the ion exchanger was removed, and
the concentration of colloidal particles was adjusted either
by dilution with deionised water, or by a gentle centrifu-
gation over a 24 h period, resulting in the latter case in a

FIG. 1. Structural formulae of the two monomers used for the radical emul-
sion polymerization. Left: 1H,1H,5H-octafluoropentylmethacrylate. Right:
methacryloxymethyltrimethylsilane.
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soft sediment of colloidal particles which was easily redis-
persed. To obtain systems with added electrolyte, a small
volume of differently concentrated dissolved potassium chlo-
ride (KCl, Merck, Germany) in deionized water was added
in replacement of the same volume of deionized water. The
poly-acrylate systems studied here exhibit a high effective
particle charge due to the deprotonation of surface sulfate
groups.

B. Visible light scattering

The SLS and DLS experiments were performed using a
3D-DLS Spectrometer spectrometer-goniometer-system (LS
Instruments AG, Switzerland), operated in multiple-scattering
suppressing cross-correlation mode. This mode involves split-
ting the incident laser beam of wavelength λ = 632.8 nm into
two beams of equal intensity by a prism system. Both beams
are focused by a lens on the same scattering volume in the
sample cell. The scattered light is defocused by another lens,
and detected by two avalanche photo diodes placed on a go-
niometer arm which allows to detect the scattered light at scat-
tering angles in between 30◦ and 150◦.

C. X-ray scattering

Our x-ray scattering experiments have been performed at
the beamline ID10A of the European Synchrotron Radiation
Facility in Grenoble.7, 28 The x-ray beam was monochroma-
tized to a photon energy of 7.98 keV, corresponding to a wave-
length λ of 1.554 Å. The monochromator bandwidth, �λ/λ
≈ 1.4 × 10−4, corresponds to a longitudinal coherence length
of about 1 μm. The x-ray beam was subsequently collimated
to a final width by a set of beam-defining slits, resulting in
a beam area of typically in between 10 μm × 10 μm and
20 μm × 20 μm.

The Fraunhofer fringes resulting from the beam defin-
ing slits, and additional stray scattering, have been sup-
pressed by a tantalum guard slit placed directly in front of
the sample. The scattered intensity has been detected by a
two-dimensional (2D) detector in case of time-averaging ex-
periments, and by a point detector in the case of photon
correlation experiments. Both detectors were interchange-
able during the experiment, enabling thus the measurement
of the static and dynamic properties for the same sample.
The detectors were placed at a detector-to-sample distance
of 2.2 m.

Our usage of a 2D detector gives enhanced statistics for
the time-averaged scattering experiments, especially at high
values of the scattering wavenumber Q, where the count rate
is drastically decreasing due to the Q−4 dependence of the
scattered intensity of spherical colloidal particles. The em-
ployed 2D detector was a charge-coupled device detector with
a total area of 1242 × 1152 pixels and a pixel size of 22.5 μm
× 22.5 μm. Typically, series of 100–200 frames with an ex-
posure time of 0.1 s–10 s were taken, subsequently averaged,
and corrected for detector background. The time-averaged
data were normalized relative to the incident flux, provided
by a monitor detector, and to the transmission of the sample.

We have recorded SAXS spectra of the pure solvent and sub-
tracted them from the data of the colloidal dispersions. The
time-averaged scattering pattern from the fluid-like colloidal
samples studied here are completely isotropic. Thus, in order
to achieve better statistics, we have azimuthally averaged the
recorded 2D scattering patterns.

Since the dynamics of the probed colloidal particles is
exceedingly faster than the time-resolution of present-day 2D
x-ray detectors, an avalanche photo diode was used instead
for the x-ray photon correlation spectroscopy (XPCS) mea-
surements. Slits directly in front of the point detector were
adjusted to a size in between 50 μm × 50 μm and 100 μm
× 100 μm.

To prevent x-ray beam damage of the samples, a flow de-
vice was used where the sample was pumped through a quartz
capillary with a diameter of 1 mm. To pump the sample, a sy-
ringe pump was used allowing for constant small flow-rates
in the μl/h range. The travel time of colloidal particles in the
beam was varied between 1 s and 0.1 s. In addition to pre-
venting beam-damage, the flow device allows for a precise
measurement and a subsequent subtraction of the scattering
intensity due to the solvent and the capillary.

III. THEORY

A. Static scattering function

The time-averaged intensity, Is, of x-rays or visible light
scattered by the colloidal particles into a solid angle, ��, is
given by29, 30

Is = dσ

d�

I0

A0
��, (1)

where I0 is the intensity of the incident beam of cross-
sectional area A0, and dσ /d� is the differential scattering
cross-section. In the absence of multiple scattering, the cross-
section of a homogeneous fluid-like sample of spherical par-
ticles can be approximated by29, 30

dσ

d�
= nVs F 2

s Pm(Q) Sm(Q), (2)

where n is the number density of colloidal particles, and Vs is
the scattering volume. The scattering amplitude, Fs, is differ-
ent for the x-ray and visible light scattering cases. For x-ray
scattering, Fs = r0�ρ, where r0 is the electronic scattering
length, and �ρ = ρc − ρs is the contrast between the electron
densities, ρc and ρs, of scatterers and solvent, respectively.
For visible light scattering and optically homogeneously scat-
tering colloids, Fs = (εr − εs)/εs is given by the dielectric
contrast, with εr and εs denoting the colloid and solvent di-
electric optical permittivities at the employed laser-light fre-
quency. In Eq. (2), Pm(Q) is the size-averaged colloidal form
factor, and Sm(Q) is the measurable colloidal static structure
factor which, for polydisperse samples, is a weighted sum of
partial static structure factors.14, 31

The mean form factor of size-polydisperse spherical par-
ticles with size distribution function p(R) is given by32

Pm(Q) =
∫ ∞

0 dR p(R) f 2
sph(QR) V 2

sph∫ ∞
0 dR p(R) V 2

sph

. (3)

Downloaded 22 May 2013 to 134.94.122.190. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



114504-4 Westermeier et al. J. Chem. Phys. 137, 114504 (2012)

Here, fsph(QR) = 3[sin(QR) − QR cos(QR)]/(QR)3 and
Vsph = (4/3)πR3 are the form amplitude and the volume of
a colloidal sphere of radius R, respectively.

By invoking the so-called decoupling approximation, we
neglect the small size-, and thus putatively also small charge-
polydispersity effects on the colloidal microstructure, while
maintaining the polydispersity influence on the scattering am-
plitudes. The decoupling approximation14 consists of approx-
imating the exact Sm(Q) in Eq. (2) by

Sd
m(Q) = [1 − X(Q)] + X(Q)S(Q), (4)

where S(Q) is the structure factor of ideally monodisperse
spheres of radius equal to the mean radius R0 = 〈R〉. The de-
coupling amplitude factor X(Q), with 0 ≤ X(Q) ≤ 1 is given
by

X(Q) =
[∫ ∞

0 dR p(R) fsph(QR) Vsph
]2

Pm(Q)
∫ ∞

0 dR p(R) V 2
sph

. (5)

The function 1 − X(Q) is displayed in Fig. 2 for the sys-
tems PA542 and PA1117, along with the corresponding Pm(Q).
For moderately small size-polydispersity, X(QR0 � 3/4) ≈ 1
− 9(�R/R0)2,14 as reflected by the low-Q plateau of 1 − X(Q)
visible in Fig. 2. For larger values of Q, the decoupling ampli-
tude exhibits oscillations, and it vanishes for Q → ∞. Hence,
the effects of polydispersity as described in the decoupling
approximation are oscillations of Sd

m(Q) which are less pro-
nounced as those of S(Q), and the appearance of an incoher-
ent scattering contribution at low Q given by [1− X(Q)]. A
proper account of the incoherent low Q scattering contribution
is important for strongly repelling charged colloidal particles
characterized by a small reduced isothermal osmotic com-
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FIG. 2. Black open circles: Normalized SAXS intensities (measurable form
factors) for dilute samples PA542 (upper curve) and PA1117 (lower curve),
at high salt concentrations of ns = 200 μM for PA542, and ns = 500 μM for
PA1117, and a common volume fraction φ < 0.005. Solid red and blue curves:
Best fit form factor, Pm(Q), according to Eq. (3), for the unimodal Schulz-
Zimm size distribution given in Eq. (6). From the fit, mean particle radii R0
= 542 and 1117 Å and polydispersities �R/R0 = 0.121 and 0.057 have been
deduced for systems PA542 and PA1117, respectively. Dashed red and dotted
blue curves: Factor 1 − X(Q) of systems PA542 and PA1117, respectively, with
the decoupling amplitude, X(Q), according to Eq. (5). The horizontal green
line segments span the Q-intervals for which H(Q) is shown in Figs. 6 and 7.
Note that 1 − X(Q → 0) ≈ 9(�R/R0)2 = 0.132 and 0.029 for systems PA542
and PA1117, respectively.

pressibility S(Q → 0) ≈ 0, since in this case it dominates the
coherent scattering contribution X(Q)S(Q).

To describe the size polydispersity in our theoretical anal-
ysis, we use the two-parametric, unimodal Schulz-Zimm33, 34

distribution function,

p(R) = Rt

�(t + 1)

(
t + 1

R0

)t+1

exp

(
− t + 1

R0
R

)
, (6)

involving the Gamma function �, and polydispersity (relative
standard deviation) �R/R0 = R−1

0 [〈R2〉 − 〈R〉2]
1/2 = [1/(t

+ 1)]1/2. We have determined the mean radius R0 and polydis-
persity �R/R0 for systems PA542 and PA1117 by fitting Pm(Q)
to the normalized SAXS intensities of strongly dilute, high-
salinity systems where Sm(Q) is practically identical to one.
The resulting fit values are discussed in Subsection IV A, in
context with Fig. 2.

According to Eqs. (2) and (4), evaluation of the scattering
cross-section requires the computation of Sm(Q) ≈ Sd

m(Q) via
X(Q) and S(Q). In calculating S(Q), we assume the particles
to interact directly by the repulsive part,

βu(x) =
⎧⎨
⎩

∞, x = r/(2R0) ≤ 1,

γ
e−kx

x
, x > 1,

(7)

of the Derjaguin-Landau-Verwey-Overbeek (DLVO) pair
potential,35 characterized by the pair interaction amplitude,
γ , and the reduced screening parameter, k, where

γ = LB

2R0

(
Zek/2

1 + k/2

)2

(8)

and

k2 = LB/R0

1 − φ
(12φ|Z| + 4πns(2R0)3). (9)

Here, β = 1/kBT, with Boltzmann constant kB and absolute
temperature T, and LB = βe2/ε is the solvent-characteristic
Bjerrum length in Gaussian units with proton elementary
charge e and zero-frequency limiting dielectric constant, ε,
of the solvent. The parameters γ and k are determined by
the number density, ns, of 1-1 salt co-ions, the colloid vol-
ume fraction φ = (4π/3)nR3

0 , involving the number density,
n, of colloidal particles, and the effective colloid charge num-
ber, Z. For weakly charged colloids, Z is equal to the col-
loidal bare charge, i.e., the number of dissociated monovalent
ionic surface groups on a colloidal particle. For the highly
charged colloids in the present study, where LBZ/(2R0) � 1,
one has to regard Z as the net charge of a colloid dressed with
closely associated counterions.36–46 The factor 1/(1 − φ) in
Eq. (9) corrects for the free volume accessible to point-like
microions at nonzero concentrations of impermeable colloidal
spheres.47, 48

We note again that in the framework of the employed
decoupling approximation, size polydispersity and a possi-
bly related particle charge polydispersity are ignored in the
employed pair potential. According to charge-renormalization
theory predictions in the saturation regime of highly charged
colloidal particles, the effective particle charge is only weakly
(i.e., logarithmically) dependent on the bare colloidal charge
and particle radius.43–46
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Furthermore, in using the pair potential according to
Eq. (7), referred to as the hard-sphere plus repulsive Yukawa
potential, attractive interaction contributions such as vdW at-
traction are neglected. For highly charged particles at low
salinity, the DLVO potential with vdW attraction included has
a pronounced principal maximum (Coulomb barrier) where
βu(x � 1) 
 1, so that close-contact pair configurations are
extremely unlikely. In addition to low-salinity samples, we
have studied colloidal suspensions with a large amount of
added salt. Despite a nearly vanishing Coulomb barrier, also
these samples show no sign of precipitation. The stability of
these high-salinity systems might be due to the hydrophilic
character of the highly charged PA spheres, and a rather weak
strength of the vdW attraction due to surface roughness. This
justifies to some extent our neglect of short-range attraction
and size polydispersity in using Eq. (7) for not too large con-
centrations, with further credibility of their neglect drawn
from the good and consistent fits of the SLS- and SAXS-
determined Sm(Q) by our theoretical results based on the HSY
pair potential in Eq. (7) (cf., Subsection IV B).

To calculate S(Q) using the pair potential in Eq. (7), we
employ the MPB-RMSA, an analytic method recently in-
troduced by two of the present authors.9, 10 It is based on
Snook and Hayter’s modification49 of the well-known RMSA
scheme.50 The details of the MPB-RMSA method are given
in Ref. 9, where also comprehensive parameter scans are de-
scribed which cover the full fluid-state regime for charge-
stabilized particles interacting according to Eq. (7). The
MPB-RMSA results for S(Q) are generally in excellent agree-
ment with far more elaborate Monte Carlo simulations, and
with results by the well-established, but non-analytic Rogers-
Young integral equation scheme.51 For neutral particles, the
MPB-RMSA solution for S(Q) reduces to that obtained in the
Percus-Yevick52, 53 approximation.

B. Dynamic scattering function

In our DLS and XPCS experiments, we have determined
the normalized intensity autocorrelation function,54

g2(Q, τ ) = 〈I (Q, t)I (Q, t + τ )〉
〈I (Q)〉2 = β(Q)g2

1(Q, τ ) + 1,

(10)
as a function of wavenumber Q and correlation time τ . Here,
β(Q) denotes the speckle contrast, and g1(Q, τ ) is the normal-
ized field autocorrelation function related to g2(Q, τ ) by the
Siegert relation. The bracket, 〈 . . . 〉, denotes a time average.
For the fluid-disordered, isotropically scattering particle sys-
tems considered here, the average can be likewise interpreted
as an equilibrium ensemble average. In the dynamical exten-
sion of the decoupling approximation,14

g1(Q, τ ) = [1 − X(Q)] G(Q, τ ) + X(Q)S(Q, τ ), (11)

where S(Q, τ ) is the intermediate scattering function,55 with
S(Q, τ = 0) = S(Q), and G(Q, τ ) is the self-intermediate scat-
tering function related to self-diffusion. For negligible non-
Gaussian contributions to G(Q, τ ),56 the self-intermediate
scattering function is equal to G(Q, τ ) = exp{−Q2W (τ )},
where W (τ ) = 1/6〈|R(0) − R(τ )|2〉 is the mean squared

displacement (divided by the factor 6 in three-dimensions) of
a sphere with center position R(τ ) at time τ .

The colloidal short-time regime τB ≈ τH � τ � τ I of the
correlation time τ is constricted from below by the momen-
tum relaxation time, τB = m/(6πη0R0), roughly equal to the
hydrodynamic vorticity diffusion time, τH = R2

0ρS/η0, for
overdamped shear waves diffusing across the radius R0, and
from above by the interaction time τI = 4R2

0/D0.14, 57 Here,
m is the mass of a colloidal sphere, and D0 = kBT/(6πη0R0) is
the translational free diffusion coefficient of an isolated single
sphere with hydrodynamic stick (i.e., no-slip) surface bound-
ary conditions suspended in an infinite and quiescent (i.e.,
overall stationary) fluid. Moreover, ρS and η0 are the mass
density and shear viscosity of the suspending Newtonian sol-
vent. Note that our particles are practically neutrally buoyant.
Using the viscosity, η0, of water at room temperature, i.e., at
T = 20 ◦C, for the systems PA542 and PA1117 we obtain τB

= 0.7 and 2.8 ns, τH = 2.9 and 12 ns, and τ I = 3.0 and
26 ms, respectively. During a short-time interval, τ , a parti-
cle diffuses a distance which is only a tiny fraction of its size.
This fact allows for calculating short-time diffusion proper-
ties from equilibrium averages involving Stokes-flow hydro-
dynamic mobilities.

In the colloidal short-time regime, W (τ ) ≈ Dsτ , where
Ds with Ds < D0 is the short-time translational self-diffusion
coefficient of a representative particle in a quiescent sus-
pension of directly and hydrodynamically interacting parti-
cles. Furthermore, S(Q, τ )/S(Q) ≈ exp {−Q2D(Q)τ} in the
colloidal short-time regime, with the short-time diffusion
function D(Q) = D0H(Q)/S(Q). The positive-valued hydrody-
namic function, H(Q), describes the influence of HIs on short-
time diffusion. For the (hypothetical) case of hydrodynami-
cally non-interacting particles, H(Q) ≡ 1. A value of H(Q)
smaller than one indicates a slowing influence of HIs on the
short-time diffusion on a length scale ∼2π /Q, whereas H(Q)
> 1 indicates a hydrodynamic diffusion enhancement.

The hydrodynamic function can be interpreted as the re-
duced short-time generalized mean sedimentation velocity of
particles in a homogeneous suspension subject to a weak force
field collinear with the scattering wavevector Q and oscillat-
ing spatially as cos(Q · r). Accordingly, H(Q → 0) is the re-
duced short-time sedimentation velocity (in the zero-volume
flux reference frame) in a homogeneous force field in units
of the corresponding sedimentation velocity of a single col-
loidal sphere. The related collective diffusion coefficient, Dc

= D0H(Q → 0)/S(Q → 0), quantifies the initial decay rate of
thermally induced density waves of macroscopic wavelength.
In the opposite limit of large wavenumbers, H(Q → ∞)
= Ds/D0 < 1. Note that 1/S(Q → 0) is commonly referred
to as the thermodynamic factor associated with collective dif-
fusion since, for monodisperse spherical particles, S(0) is re-
lated to the isothermal osmotic compressibility.14

The shape of H(Q) is quite similar to that of S(Q), how-
ever, with less pronounced oscillations. In particular, the prin-
cipal peaks of H(Q) and S(Q) are located at practically the
same wavenumber, Qm, inversely proportional to the diam-
eter of the nearest neighbor cage formed around a colloidal
particle. Therefore, Dcge = D0H (Qm)/S(Qm) is referred to
as the cage-diffusion coefficient. While H(Qm) < 1 for many
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systems, in Sec. V we show that values H(Qm) > 1 are
attained for suspensions at low salinity and low volume
fraction.

In decoupling approximation at short times,

g1(Q, τ ) = [1 − X(Q)] e−Q2Dsτ + X(Q)S(Q)e−Q2D(Q)τ ,

with two exponentially decaying diffusive modes of relax-
ation rates determined by Ds and D(Q), respectively.

A first cumulant analysis of g1(Q, τ ) provides the mea-
surable diffusion function,

Dm(Q) = − lim
τ→0

1

Q2

∂

∂τ
ln g1(Q, τ ) = D0

Hm(Q)

Sm(Q)
, (12)

which incorporates the measurable hydrodynamic function
Hm(Q). In decoupling approximation, the latter is approxi-
mated by

Hd
m(Q) = [1 − X(Q)]

Ds

D0
+ X(Q)H (Q), (13)

where H(Q) is the hydrodynamic function of ideally monodis-
perse spheres of radius R0.

To calculate H(Q), we employ a self-part corrected ver-
sion of the δγ -expansion scheme (self-part corrected δγ -
scheme, for short).11 We will show in Sec. V that the self-
part corrected δγ -scheme becomes less accurate when both φ

and 1/k are large. This inaccuracy can be traced back to the
employed self-part correction.

The hydrodynamic function can be decomposed, accord-
ing to

H (Q) = Ds

D0
+ Hd (Q), (14)

into a self-part, Ds/D0, and a distinct part, Hd(Q), where Hd(Q
→ ∞) = 0. Both Ds/D0 and Hd(Q) can be calculated sepa-
rately using the original lowest order δγ -expansion results by
Beenakker and Mazur.58–60 In this scheme, many-particle HIs
are approximately accounted for, and only S(Q) is required as
static input which makes the δγ method analytically tractable.
A crucial point to notice here is that S(Q) enters only in the
δγ -scheme expression for Hd(Q), whereas the correspond-
ing δγ -scheme expression for Ds is independent of the pair
potential. The δγ -scheme provides quite accurate results for
Hd(Q) both for neutral and charged spheres, but for Ds it is de-
cently accurate only for neutral spheres and when φ ≤ 0.4. For
charged spheres, a more accurate method than the δγ -scheme
is required for calculating Ds.

In Refs. 11 and 25, it was shown that the Ds of charge-
stabilized spheres can be computed to very good accuracy
using the approximation of pairwise additive hydrodynamic
interactions (PA-scheme), provided that φ � 0.15. Like the
δγ -scheme, the PA-scheme requires S(Q), or equivalently,
the radial pair-distribution function g(r), as the only input.
In the PA-scheme, however, three-body and higher order
HIs contributions are neglected. In our PA-scheme calcula-
tions of Ds, we use numerically precise two-sphere hydrody-
namic mobility tensors that include the details of near-contact
lubrication,61–63 making the PA-scheme therefore exact to lin-
ear order in φ. In the self-part corrected δγ -scheme used in
this paper, H(Q) is calculated according to Eq. (14), with

Ds/D0 obtained from the PA-scheme, and Hd(Q) calculated
using the δγ -scheme. The explicit PA-scheme expression for
Ds/D0, and the δγ -scheme expression for Hd(Q), are given,
e.g., in Ref. 11.

In the special case of neutral hard spheres (HS), the third-
order virial expansion result,

DHS
s

D0
≈ 1 − 1.8315φ(1 + 0.1195φ − 0.70φ2), (15)

for Ds has been shown to be more accurate than the corre-
sponding δγ -scheme prediction.11 Equation (15) agrees very
well with numerically precise accelerated Stokesian dynam-
ics simulation22 and hydrodynamic force multipole64 results,
with an accuracy better than 3% even up to the volume frac-
tion φHS

f ≈ 0.49, where the freezing transition of hard spheres
occurs. For HS systems, and for high-salinity systems of
charged particles alike, H(Q) is favorably calculated with its
Hd(Q) part obtained from the δγ -scheme, and Ds calculated
using Eq. (15).

IV. RESULTS: STATIC PROPERTIES

In the following, we distinguish between the experimen-
tal (nominal) volume fraction, φnom, and the volume fraction,
φ, with the latter obtained as a fit parameter from our theoret-
ical modeling of the scattering intensity. The nominal volume
fraction is selected experimentally either by dilution or con-
centration of the deionised master suspensions with known to-
tal mass of PA colloidal particles and respective particle mass
density. No distinction is made between the experimentally
selected (nominal) concentration, nnom

s , of added KCl, and
the salt concentration, ns, entering the theoretical analysis via
Eq. (9). The reasons why φ, but not ns, is treated as a fit pa-
rameter are discussed in detail in Subsection IV B.

In the presented study, system PA542 has been prepared
with four nominal volume fractions φnom = 0.001, 0.002,
0.004, and 0.008, and system PA1117 for φnom = 0.08, 0.16,
and 0.32. For all considered volume fractions, nnom

s has been
varied to examine the effect of electrostatic screening. The
parameters of all samples are listed in Table I.

A. Form factor

To deduce the particle form factor of the two PA sys-
tems, we have recorded SAXS intensities for dilute samples at
φnom < 0.005. Residual direct particle interactions were elec-
trostatically screened by the addition of a 1-1 KCl electrolyte
solution, leading to nominal salt concentrations of nnom

s = 200
and 500 μM for systems PA542 and PA1117, respectively.

Figure 2 shows the corresponding SAXS intensities
(open circles) of dilute systems PA542 and PA1117 with neg-
ligible particle correlations. The depicted intensities have
distinct minima indicative of rather monodisperse particles.
As shown, the intensities can be excellently fitted using
Eqs. (1)–(3) with Sm(Q) set equal to one. The best-fit form
factor in Fig. 2 (solid red and blue curves) give average par-
ticle radii, R0, of 542 and 1117 Å, and size polydispersities,
�R/R0, of 12.1 % and 5.7 % for systems PA542 and PA1117,
respectively. Figure 2 depicts additionally the decoupling
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TABLE I. Particle type, nominal volume fraction, φnom, nominal salt con-
centration, nnom

s , fitted volume fraction, φ, fitted effective charge number,
Z, peak wavenumber location, Qm, and principal peak heights, S(Qm) and
H(Qm), of the static structure factor and hydrodynamic function, respectively,
for all investigated systems. The salt concentration, nnom

s , was used as input
to the MPB-RMSA fits of the experimental Sm(Q). For the case of nnom

s = 0,
a residual salt concentration of ns = 1 μM was used in the calculations. Pa-
rameters are T = 293.15 K, ε = 80.1, and R0 = 542 Å and 1117 Å for system
PA542 and PA1117, respectively. The arrows in the rightmost column indicate
the systems where S(Q) and H(Q) are shown in Figs. 3, 4, 6, and 7.

Particle φnom nnom
s φ Z Qm S(Qm) H(Qm)

type [mM] [nm−1]

PA542 0.001 0 0.0011 205 0.009 1.37 1.04

PA542 0.001 0.01 0.0011 209 0.012 1.05 1.01

PA542 0.002 0 0.0027 334 0.011 2.11 1.11 ←
PA542 0.002 0.01 0.0021 450 0.011 1.24 1.04 ←
PA542 0.002 0.05 0.0021 750 0.016 1.05 1.01 ←
PA542 0.002 0.1 0.0024 900 0.019 1.03 1.01

PA542 0.004 0.005 0.0052 395 0.014 1.91 1.12 ←
PA542 0.004 0.01 0.0054 260 0.015 1.33 1.06 ←
PA542 0.004 0.05 0.0030 500 0.017 1.06 1.01 ←
PA542 0.008 0.005 0.0089 410 0.016 2.33 1.18 ←
PA542 0.008 0.01 0.0113 440 0.018 2.10 1.17 ←
PA542 0.008 0.02 0.0085 450 0.017 1.48 1.09

PA542 0.008 0.05 0.0055 680 0.017 1.15 1.03 ←
PA1117 0.08 0 0.136 65 0.0213 1.28 1.03

PA1117 0.08 0.05 0.086 67 0.0236 1.10 0.93 ←
PA1117 0.08 0.2 0.077 148 0.0236 1.09 0.97

PA1117 0.08 0.5 0.080 306 0.0236 1.10 0.97 ←
PA1117 0.08 2 0.085 500 0.0252 1.09 0.97 ←
PA1117 0.08 5 0.094 455 0.0263 1.09 0.97

PA1117 0.16 0 0.211 63 0.0244 1.32 0.91

PA1117 0.16 0.01 0.189 71 0.0244 1.30 0.91

PA1117 0.16 0.035 0.175 92 0.0244 1.29 0.90

PA1117 0.16 0.1 0.167 131 0.0244 1.29 0.87 ←
PA1117 0.16 0.5 0.159 400 0.0244 1.29 0.88 ←
PA1117 0.16 1 0.159 550 0.0248 1.26 0.88

PA1117 0.16 2 0.156 1100 0.0248 1.25 0.87 ←
PA1117 0.16 3.5 0.145 1000 0.0255 1.17 0.83

PA1117 0.16 5 0.150 1000 0.0255 1.16 0.82

PA1117 0.32 0.1 0.360 260 0.0276 2.89 0.61 ←
PA1117 0.32 0.2 0.364 285 0.0280 2.57 0.61

PA1117 0.32 0.35 0.351 292 0.0280 2.15 0.59 ←
PA1117 0.32 3.5 0.325 500 0.0280 1.70 0.54

PA1117 0.32 5 0.300 500 0.0280 1.50 0.54 ←
PA1117 0.32 10 0.281 500 0.0280 1.40 0.53

factor 1 − X(Q) of both systems, with X(Q) evaluated accord-
ing to Eq. (5). Good agreement is observed between 1 − X(Q
→ 0), and its low-polydispersity approximation 9(�R/R0)2,
with the latter indicated by the horizontal green line segments
at low Q values.

B. Structure factor

For samples with significant particle correlations, the
measurable static structure factor, Sm(Q), was determined ex-
perimentally as the colloid concentration-weighted ratio of
the SAXS- and SLS-determined mean intensity, Is(Q), and the

corresponding low-concentration SAXS intensity data dis-
played in Fig. 2. Regarding the SLS measurements of Is(Q) at
low Q, additional low-concentration SLS measurements were
made for the static structure factor determination. A beam
stop was used to block the direct beam at very low Q.

In Fig. 3, open circles represent the SLS-determined
Sm(Q) for nine samples of system PA542, with nominal vol-
ume fractions φnom = 0.002, 0.004, and 0.008, and concen-
trations of added KCl ranging from nnom

s = 0 (no added salt)
to 0.05 mM. The panels of Fig. 3, and likewise of Figs. 4,
6 and 7 discussed further down, are ordered with respect to
φnom, which increases from top to bottom, and with respect to
nnom

s , which decreases from left to right. Hence, the strength
of the inter-particle correlations increases from the top left to
the bottom right panel. The SAXS S(Q) for nine samples of
system PA1117 are shown in Fig. 4. Here, the nominal volume
fractions are φnom = 0.08, 0.16, and 0.32, respectively, and
nnom

s is varied in between 0.05 and 5 mM.
In the MPB-RMSA fits of the experimental Sm(Q)

based on the decoupling approximation expressions in
Eqs. (4) and (7), T = 293.15 K, ε = 80.1, and R0 = 542
or 1117 Å are kept constant, while the volume fraction φ is
treated as an adjustable parameter. To consider the added salt
concentration, ns, as another fit parameter would be problem-
atic since Z and ns opposingly influence the undulations in
S(Q), most prominently visible in the peak height S(Qm). The
peak height grows with increasing Z, but decreases with in-
creasing ns. Different combinations of Z and ns can result thus
in quite similar S(Q). In the theoretical analysis of the ex-
perimental Sm(Q), it is therefore helpful to have independent
control on one of the two parameters Z or ns. In the present
work, nnom

s is controlled experimentally with high precision
by the addition of a KCl solution of known concentration.
Thus, in our fits of Sm(Q), ns is set equal to nnom

s , leaving only
the two fit parameters φ and Z. The best-fit values for φ and
Z are listed in Table I, for all systems studied. We note that
ns = 1 μM was actually used in the case of nnom

s = 0, i.e.,
in the zero added-salt case, to account approximately for the
self-dissociation of water at neutral pH (ns ≈ 0.1 μM), and for
residual electrolyte ions stemming from dissociated CO2 (ns

� 1 μM). These ions are practically inevitable in an aqueous
solvent.

The red solid curves in Fig. 3 are the best-fit measur-
able static structure factors, Sd

m(Q), obtained in decoupling
approximation according to Eq. (4), in comparison with the
experimental Sm(Q) (open circles). The static structure fac-
tor, S(Q), of ideally monodisperse spheres of radius R0 enter-
ing into Eq. (4), has been computed using the analytic MPB-
RMSA scheme (brown dashed curves). A general observation
made in Fig. 3 is that Sd

m(Q) is in better agreement with the
experimental data than S(Q), in particular at small wavenum-
bers Q < Qm, and for strongly repelling particles (large φ or
low ns), where S(Q → 0) has a value close to zero. According
to Eq. (4), in these samples, Sd

m(Q → 0) ≈ 1 − X(Q → 0).
For system PA542, 1 − X(0) ≈ 0.132 (cf. upper green line seg-
ment in Fig. 2).

The theoretical fits of Sd
m(Q) in Fig. 3 are in good over-

all agreement with the SLS-determined Sm(Q), except for a
systematic deviation at low Q. These low-Q deviations can
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FIG. 3. Open symbols: SLS measurable static structure factors, Sm(Q), of system PA542, at nominal volume fractions, φnom, of 0.002 (top row of panels), 0.004
(center row), and 0.008 (bottom row). The nominal salt concentration, nnom

s , decreases from left to right, as indicated in each panel. Dashed brown curves:
ideal structure factor, S(Q), in MPB-RMSA; solid red curves: measurable structure factor, Sd

m(Q), in decoupling approximation. The fit parameters are listed in
Table I. Identical axes scales are used in panels (a)– (i). The (measurable) hydrodynamic functions corresponding to the structure factors shown here are plotted
in Fig. 6.

be partially attributed to low-concentration impurities such as
dust particles. In addition, multiple scattering with more pro-
nounced effects at small Q values might add to the deviations.
Moreover, there are residual solvent and mixed solvent-solute
scattering contributions not accounted for in the theoretical
analysis. All these left-out scattering contributions can en-
large Sm(Q ≈ 0) significantly for low-salinity systems where
the ideal structure factor S(Q ≈ 0) is small. For a discussion
of possible solvent and solvent-solute scattering corrections
to the experimental structure factor, we refer to Ref. 65.

The SAXS-determined static structure factors of the large
PA1117 particles (open circles) are shown in Fig. 4. The red

solid curves are best-fit MPB-RMSA results for S(Q). Dif-
ferent from the PA542 particles in Fig. 3, where the incoherent
scattering contribution at low Q values is significant, the poly-
dispersity of the big particles is so small that its influence can
be disregarded. Indeed, for the samples in Fig. 4, the princi-
pal peak in S(Q) occurs at Qm < 0.03 nm−1. On noting (see
Fig. 2) that 1 − X(Q ≤ Qm) < 0.029 for system PA1117,
this implies that for the nearly monodisperse PA1117 parti-
cles Sm(Q), Sd

m(Q), and S(Q) are practically equal. The blue
dashed curves in Fig. 4 are results for S(Q) for neutral hard
spheres, calculated in Percus-Yevick approximation for the
same φ as in the charged-particles case. For the high-salinity
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FIG. 4. Static structure factors, S(Q), of system PA1117, for nominal volume fractions, φnom, of 0.08 (top row of panels), 0.16 (center row), and 0.32 (bottom
row). The nominal salt concentration, nnom

s , decreases from left to right, as indicated. Open circles: SAXS results; red solid curves: structure factor, S(Q),
obtained in MPB-RMSA; blue dashed curves: Percus-Yevick result for S(Q) for neutral hard spheres at the same φ as in the respective MPB-RMSA results.
All fit parameters are listed in Table I. The hydrodynamic functions corresponding to the S(Q)’s are plotted in Fig. 7. The horizontal axis scale is the same in
each panel. The vertical axis scale is the same in each row of panels. Unlike the PA542 samples structure factors plotted in Fig. 3, S(Q), Sm(Q), and Sd

m(Q) are
practically indistinguishable for the low-polydispersity PA1117 system.

sample (g), the charged-sphere and neutral hard-sphere struc-
ture factors are practically equal, indicating that the electro-
static repulsion in this system is fully screened. The same
conclusion applies to the sample at φnom = 0.32, which has
an even higher salt concentration of 10 mM (its S(Q) is not
shown in Fig. 4, but its parameters are listed in Table I).

We note from Table I that for both particulate systems
PA542 and PA1117, the deduced effective charge number, Z,
is overall increasing with increasing volume fraction, and in-
creasing concentration of added electrolyte. This is consis-
tent with cell-model based charge renormalization calcula-

tions predicting the same trends for not too small volume
fractions.43, 66 The smaller effective charge values for the
PA1117 samples at low salinities could be due to the additional
growth step performed in the synthesis process of this parti-
cles, resulting possibly in a smaller number of charged sulfate
groups per unit of surface area.

According to Table I, the best-fit volume fractions φ are
overall in good agreement with the nominal values φnom. For
the PA1117 samples with larger φnom, a slight decrease of
φ with increasing ns can be observed. The reason for this
is unclear, in particular, since there is no indication for the
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formation of aggregates even at the largest considered salt
concentration.

C. Limiting scaling relations for the nearest
neighbor shell

According to Table I, the principal peak wavenumber lo-
cation, Qm, of the static structure factor shifts to larger values
with increasing φnom, indicative of a compression of the near-
est neighbor shell radius, Rm ∼ 2π /Qm, with increasing par-
ticle concentration. A precise definition of the nearest neigh-
bor shell radius is given by the principal peak position, rm,
of the radial distribution function g(r). For samples of equal
φnom, Qm shifts to larger values with increasing electrolyte
concentration, as expected. Only for the sample (h) in Fig. 3,
with φnom = 0.008 and nnom

s = 10 μM, is this trend violated.
This can be attributed to experimental variations in the parti-
cle concentration during sample preparation, reflected in the
relatively large differences between φ and φnom in row 11 of
Table I.

In Fig. 5, Qm × (2R0) and rm/(2R0) are displayed as func-
tions of φ, for all explored systems. Filled symbols are the
findings for the seven systems of lowest salt concentration,
nnom

s , at a given φnom. These are the samples whose parame-
ters are given in rows 1, 3, 7, 10, 14, 20, and 29 of Table I.
As expected, the nearest neighbor shell radius, rm, decreases
with increasing φ. For non-overlapping particles, rm/(2R0)
≥ 1, with the limiting ratio rm/(2R0) = 1 valid for neutral
hard spheres. The hard-sphere limit is almost reached for
the PA1117 samples with the largest values of nnom

s (open red
squares in Fig. 5). While S(Q) and g(r) are Fourier transform
pairs, there is in general no simple one-to-one relation be-
tween rm and Qm. However, Qm × (2R0) ≈ 2π for the PA1117
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;
r m

/(
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R
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×
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FIG. 5. Red squares and red upward triangles: principal peak position, rm,
of the MPB-RMSA radial distribution function g(r). Blue diamonds and
blue downward triangles: principal peak position, Qm, of S(Q). Both rm and
Qm are normalized with the mean particle diameter, 2R0, and plotted on a
double-logarithmic scale as functions of the fit volume fraction φ. Triangles:
PA542 samples. Squares and diamonds: PA1117 samples. Solid red and blue
lines: limiting φ-scaling expressions in Eqs. (16) and (17) for rmax

m /(2R0) and
Qmin

m × (2R0). Dotted blue line: Eq. (17), with the factor 2.2 replaced by
2.0. Dashed blue curve: QHS

m × (2R0), where QHS
m is the peak position of the

Percus-Yevick neutral hard-sphere S(Q). The data points comprise all systems
in Table I. For each nominal volume fraction, φnom, the system of lowest salt
concentration, nnom

s , is represented by a filled symbol.

samples with largest considered values of nnom
s (open blue di-

amonds in Fig. 5). Note here that the product Qm × (2R0)
slightly exceeds 2π for φ � 0.3, and for high salt concentra-
tions (rightmost open diamonds). A strict upper limit for Qm,
at given φ, is provided by the wavenumber, QHS

m , where the
S(Q) of neutral hard spheres attains its principal maximum.
In Fig. 5, QHS

m predicted in Percus-Yevick approximation is
represented by the dashed blue curve.

As noticed from Fig. 5, an upper limit for rm is provided
by the simple-cubic mean geometrical distance rmax

m = n−1/3.
For strongly repelling (low-salinity) systems of charged par-
ticles interacting by the HSY pair potential in Eq. (7), it
has been shown in Ref. 9 that rm ≈ rmax

m and Qm ≈ Qmin
m

= 2.2πn1/3, where

rmax
m /(2R0) = (π/6)1/3φ−1/3 (16)

and

Qmin
m × (2R0) = 2.2 × 61/3 × π2/3 × φ1/3. (17)

The φ-scaling expressions in Eqs. (16) and (17) are repre-
sented in Fig. 5 by the solid red and blue lines. Due to the fac-
tor 2.2 appearing in Eq. (17), Qmin

m is not equal to 2.0π/rmax
m .

Instead, the relation Qmin
m = 2.2π/rmax

m applies. Our lowest-
salt concentration samples which cover three orders of mag-
nitude in φ (filled symbols), have peak positions in excellent
agreement with Eqs. (16) and (17) for the value 2.2 (blue solid
line), but not for the value 2.0 (blue dotted line).

Note that our experimental-theoretical findings for the
concentration dependence of rm and Qm are in qualitative
agreement with related studies for dilute suspensions of
charged silica spheres,67, 68 where, however, the erroneous
prefactor 2.0 has been used in Eq. (17).

At fixed electrolyte concentration, S(Qm) increases with
increasing φ (see Table I and Figs. 3 and 4), due to the en-
larged particle correlations. Different from that, for fixed vol-
ume fraction, an increase in nnom

s results in a decrease of
S(Qm), due to the stronger screening of the electrostatic in-
teractions. The decrease in S(Qm) is accompanied by a princi-
pal peak broadening, i.e., by a more diffuse nearest neighbor
cage.

V. RESULTS: DYNAMIC PROPERTIES

We compare our experimental results for the short-time
diffusion properties with predictions by the self-part corrected
δγ -scheme, which requires S(Q) as the only input. The lat-
ter is given by the MPB-RMSA fits of the SLS and SAXS
data discussed earlier. Thus, our theoretical results for D(Q),
H(Q), Ds, Dcge, and Dc presented in the following are free of
adjustable parameters. Therefore, deviations between our ex-
perimental data and theoretical predictions for the short-time
diffusion properties are indicative of inaccuracies caused by
the approximate treatment of many-body HIs and the invoked
decoupling approximation.

All short-time diffusion data presented are rendered di-
mensionless by dividing them by the translational free dif-
fusion coefficient D0, deduced from the short-time decay
of g1(Q, τ ) at high dilution where D0 = Ds ≡ D(Q) and
S(Q) ≡ 1 within experimental scatter, so that g1(Q, τ )
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FIG. 6. Open circles: DLS/SLS-determined measurable hydrodynamic function, Hm(Q), of the PA542 samples with nominal volume fraction, φnom,
of 0.002 (top row of panels), 0.004 (center row), and 0.008 (bottom row). The nominal salt concentration, nnom

s , decreases from left to right.
Dashed brown curves: hydrodynamic function, H(Q), of ideally monodisperse particles calculated using the self-part corrected δγ -scheme; solid red
curves: measurable hydrodynamic function, Hd

m(Q), calculated in decoupling approximation according to Eq. (13). System parameters are listed in
Table I. The corresponding (measurable) structure factors, Sm(Q), Sd

m(Q), and S(Q), have been plotted in Fig. 3. Identical axes scales are used in all
panels.

∝ exp {−Q2D0τ}. We have obtained in this way the ex-
perimental mean values D0 = 3.49 × 10−12 m2/s and 1.90
× 10−12 m2/s for the PA542 and PA1117 particles, respectively,
at T = 20 ◦C.

A. Hydrodynamic function

The (measurable) hydrodynamic functions of the PA542

and PA1117 samples are displayed in Figs. 6 and 7, respec-
tively. Open circles represent experimental data for Hm(Q),
obtained by multiplying the DLS and XPCS determined mea-
surable short-time diffusion function, Dm(Q), with the SLS

and SAXS determined measurable static structure factors de-
picted in Figs. 3 and 4, and by dividing through the experi-
mental values for D0. For the PA542 system samples, where
incoherent scattering caused by the larger polydispersity is
significant, Dm(Q) has been extracted experimentally by a first
cumulant analysis according to Eq. (12).

The experimental data for Hm(Q) in Fig. 6 are com-
pared with our theoretical results in decoupling approxima-
tion, related to the hydrodynamic function H(Q) of ideally
monodisperse spheres of radius R0 by Eq. (13). We recall from
Sec. IV that the incoherent scattering contribution is negligi-
ble for the nearly monodisperse PA1117 particles where X(Q)
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FIG. 7. Hydrodynamic function, H(Q), of PA1117 samples with nominal volume fraction, φnom = 0.08 (top row of panels), 0.16 (center row), and 0.32 (bottom
row). The nominal salt concentration, nnom

s , decreases from left to right. Open circles: XPCS and SAXS data; dotted orange curves: H(Q) according to the
uncorrected δγ -scheme. Solid red curves: H(Q) obtained from the self-part corrected δγ -scheme, with Ds/D0 calculated using the PA-scheme. Dashed blue
curve: H(Q) in the self-part corrected δγ -scheme, but with Ds/D0 taken as that of neutral hard spheres according to Eq. (15). The system parameters are listed
in Table I, and the corresponding structure factors are shown in Fig. 4. The horizontal axis scale is identical in each panel, and the vertical H(Q) axis scale
is identical in each row of panels. The displayed Q-range is half of that in Fig. 4. Unlike the PA542 samples hydrodynamic functions plotted in Fig. 6, H(Q),
Hm(Q), and Hd

m(Q) are practically indistinguishable for the low-polydispersity PA1117 system.

≈ 1 in the full Q-interval of Fig. 7. For the PA1117 system,
we have therefore determined D(Q) experimentally from fit-
ting the short-time decay of the normalized field autocorrela-
tion function using g1(Q, τ )∝ exp {−Q2D(Q)τ}. To avoid ra-
diation damage of the PA1117 samples, XPCS measurements
were performed in laminar flow, with scattering wavevector
Q selected perpendicular to the flow direction. The flow mea-
surements are affected by decorrelation arising from the tran-
sit time of the particles across the scattering volume. This
has been accounted for by the additional decorrelation factor
g1(Q, τ )∝ exp [−(ν trτ )2] where the transit rate, ν tr, depends

on the (mean) flow speed and the illuminated sample area. For
details see Ref. 69.

The red solid lines in Fig. 6 are theoretical results for
Hd

m(Q) obtained in decoupling approximation according to
Eq. (13). The invoked H(Q) of ideally monodisperse particles
is represented by the brown dashed curves, obtained using the
self-part corrected δγ -scheme with Ds/D0 calculated from the
PA-scheme. For the structure factor input, the MPB-RMSA
S(Q)’s depicted in Fig. 3 have been used.

The red solid curves in Fig. 7 are the results for H(Q)
by the self-part corrected δγ -scheme in conjunction with the
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PA-scheme results for Ds/D0. The corresponding MPB-
RMSA S(Q), used as static input, are shown in Fig. 4. The
orange dotted curves in Fig. 7 are results for H(Q) obtained
using Beenakker and Mazur’s original δγ -scheme. The blue
dashed curve in panel (g) of Fig. 7 is the H(Q) from the self-
part corrected δγ -scheme, however with Ds/D0 obtained from
the neutral hard-sphere expression in Eq. (15).

For the samples with φnom ≤ 0.16 (Fig. 6 and panels (a)–
(f) in Fig. 7), there is good agreement between the experi-
mental Hm(Q) and H(Q) and the theoretical predictions by
the self-part corrected δγ -scheme, with PA-scheme Ds/D0.
Significant deviations are seen, however, for the most con-
centrated samples in Fig. 7 where φnom = 0.32. The reason
for these deviations is the known failure of the PA-scheme to
correctly predict Ds/D0 for volume fractions φ � 0.15, when
three-body and higher order HIs contribute significantly to the
short-time self-diffusion coefficient.11 Higher order HIs influ-
ences on Ds, left out in the PA-scheme, give rise to the shield-
ing of the HIs between a pair of particles by interlaced third
particles or particle clusters. Hydrodynamic shielding reduces
the strength, but not the range of the HIs, and it gives rise to an
increase of Ds/D0 relative to the PA-scheme predicted values.
This explains why the experimental H(Q) of the PA1117 sam-
ples at φnom = 0.32 are overall underestimated by the self-
part corrected δγ -scheme prediction with PA-scheme Ds/D0.
The underestimation of Ds/D0 by the PA-scheme at the con-
sidered large φ values is so strong that unphysical negative
values of H(Q) at low Q are predicted for the samples in pan-
els (h) and (i) of Fig. 7. Note, however, from Eq. (14) and
panels (g)–(i) in Fig. 7, that the distinct part, Hd(Q), of H(Q)
is still predicted with good accuracy by the δγ -scheme even
at φnom = 0.32.

These observations suggest that the self-part corrected
δγ -scheme, with PA-scheme Ds/D0 input, is reliably appli-
cable for φ � 0.15 only. Indeed, at φnom = 0.32 the uncor-
rected δγ -scheme predictions for H(Q) (orange dotted curves
in Fig. 7) are somewhat fortuitously in better agreement with
the experimental data. On first sight, one may conclude thus
that the uncorrected δγ -scheme should be used in place of
the corrected δγ -scheme whenever the δγ -scheme prediction
for Ds/D0 is larger than the one by the corresponding PA-
scheme. Stated alternatively, for a given potential parameter
set (γ , k, φ), one could calculate Ds/D0 both using the δγ - and
the PA-schemes, adding the larger of the two predictions for
Ds/D0 to the δγ -scheme result for Hd(Q). While such an ad
hoc approach has some empirical justification, from a theoret-
ical point of view it is unsatisfying for the following reason:
Switching from the PA- to the δγ -scheme result for Ds/D0 at
some volume fraction φ*, where the predicted values cross
over, induces an unphysical kink (at φ*) in Ds(φ). Moreover,
it is unsatisfying that the invoked zeroth-order δγ -scheme ex-
pression for Ds/D0 has no dependence on the form of the pair
potential.

Thus, in place of an ad hoc switching between the PA and
δγ -scheme results for Ds/D0, a theoretical input for Ds/D0 re-
liable at all fluid-state volume fractions is on request. With-
out resorting to numerically expensive simulations, such an
input is available to date only for the special case of neu-
tral hard spheres, for which Eq. (15) can be applied to very

good accuracy for concentrations up to the hard-sphere freez-
ing transition value. For the PA1117 sample at φnom = 0.32 and
nnom

s ≥ 5 mM (the two lowermost entries of Table I), Eq. (15)
for Ds/D0 is a viable input indeed, on recalling from our dis-
cussion of system (g) in Fig. 4 that, due to the high salt con-
tent, the pair correlations in these systems are practically in-
distinguishable from those of neutral hard spheres. In panel
(g) of Fig. 7 the blue dashed curve is H(Q) with Hd(Q) calcu-
lated in the δγ -scheme and Ds/D0 according to Eq. (15). It is
in excellent agreement with the experimental hydrodynamic
function.

No simple analytic method is available to date allowing
for an accurate calculation of the Ds for low-salinity systems
with φ � 0.15 showing long-ranged electrostatic repulsion.
For the PA1117 samples at φnom = 0.32 and lower salt con-
centrations, what can be currently done is to invoke elaborate
computer simulations22 for Ds/D0, to use the non-modified
δγ -scheme for H(Q), or to treat Ds/D0 simply as an adjustable
parameter.

B. Wavenumber dependent diffusion
and scaling relations

We proceed by discussing the concentration depen-
dence of the normalized collective diffusion coefficient Dc/D0

= H(Q → 0), the normalized short-time self-diffusion coef-
ficient Ds/D0 = H(Q → ∞), and the hydrodynamic function
peak value H(Q ≈ Qm). See here panels (a), (b), and (c) in
Fig. 8 for the experimental values. In each panel, the PA542

sample data are represented by triangles, and PA1117 data by
squares. As in Fig. 5, filled symbols in Fig. 8 are results
for the seven systems where nnom

s is lowest at a given φnom,
with parameters listed in rows 1, 3, 7, 10, 14, 20, and 29 of
Table I.

The collective diffusion coefficient Dc, which quan-
tifies the (initial) decay rate of thermally induced den-
sity fluctuations of macroscopic wavelengths, is difficult
to access experimentally since it invokes a delicate zero-
Q extrapolation of D(Q). Incoherent scattering contribu-
tions at low Q cause significant deviations between the
experimental values, and the theoretical predictions for
D(Q) and S(Q) without polydispersity. The most pronounced
low-Q deviations occur at low salinity between the ideal struc-
ture factor S(Q) and the measurable static structure factor (see
Fig. 3). The sample with the strongest deviations between
the two functions is the PA542 sample at φnom = 0.002 and
nnom

s = 0 (panel (c)) in Figs. 3 and 6. For this system, the
theoretical prediction is Dc/D0 = 94, as indicated by the up-
permost filled triangle in panel (a) of Fig. 8. If one would
try to determine Dc/D0 using the ratio of the experimental
values of Hm(Q ≈ 0) = 0.81 and Sm(Q ≈ 0) = 0.29, the
erroneous result Dc/D0 = 2.80 would be obtained, differing
from the theoretical value 94 by a large factor of 34. Hence, a
theoretical analysis of the experimental data is indispensable
for a reliable determination of the (mean) collective diffusion
coefficient. Note that the short-time collective diffusion co-
efficient discussed here is only slightly larger than its long-
time counterpart.22 Different from that, the long-time self-
diffusion coefficient in concentrated systems is substantially

Downloaded 22 May 2013 to 134.94.122.190. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



114504-14 Westermeier et al. J. Chem. Phys. 137, 114504 (2012)

0.001 0.01 0.1 1φ

0.6

0.8

1.0

1.2

H
(Q

m
)

0.4

0.6

0.8

1

D
s/D

0

1

10

100

D
c/D

0

0 0.005 0.01
0.98

0.99

1

(a)

(b)

(c)

FIG. 8. (a) Normalized (short-time) mean collective diffusion coefficient
Dc/D0. (b) Normalized short-time translational self-diffusion coefficient
Ds/D0. (c) Hydrodynamic function peak value H(Qm). All quantities are
plotted as functions of the fit volume fraction φ. Triangles: PA542 samples;
Squares: PA1117 samples. For each φnom, the sample of lowest nominal salt
concentration is represented by a filled symbol. Dashed blue curves in (a)–
(c) are the neutral hard-sphere results in Eqs. (18), (15) and (20), respectively.
Red solid curves are our theoretical results for highly charged particles at low
salinity. The solid curves in (a) were obtained using the self-part corrected
δγ -scheme with PA-scheme Ds/D0 for fixed values of Z and ns, and for the
six samples with parameters listed in rows 1, 3, 7, 10, 14, and 20 of Table
I. In (b), the solid curve represents the scaling expression for the Ds/D0 of
charged particles in Eq. (19), using at = 2.5. The solid curve in (c) is the lim-
iting freezing line result for the H(Qm) of strongly repelling charged particles,
calculated according to Ref. 24.

smaller than Ds, down to a value of 0.1Ds at the freezing tran-
sition point.70

The coefficient Dc/D0 of charged colloidal spheres in-
creases with decreasing salt concentration. For very high
salt concentrations (lowermost open squares in panel (a) of
Fig. 8), the experimental Dc/D0 are close to the truncated
second-order virial expansion result,

DHS
c

D0
≈ 1 + 1.454φ − 0.45φ2, (18)

for neutral hard spheres, which is known from comparison
with simulation22 to be decently accurate even for large vol-
ume fractions up to the freezing transition value φHS

f ≈ 0.49.

Equation (18) is represented by the dashed blue curve in panel
(a) of Fig. 8.

A similarly simple expression for the upper limiting
boundary for the Dc/D0 of charged particles interacting by
the HSY pair potential is not known. For lower salinity sys-
tems, Dc(φ)/D0 can pass through a maximum as a function of
φ (for constant Z > 0),12–16 increasing initially steeply from
the infinite dilution value of one. The strong low-φ increase
of Dc(φ) is triggered by the strong decrease of the reduced
isothermal osmotic compressibility, S(Q → 0), with increas-
ing φ. With further increasing φ, HIs can slow collective dif-
fusion to such an extent that Dc(φ) passes through a maximum
at some φm. With increasing Z or decreasing ns, the maximum
value Dc(φm)/D0 increases, whereas φm(Z, ns) decreases.

The six solid red curves in panel (a) of Fig. 8 are the
self-part corrected δγ -scheme predictions for Dc/D0, with PA-
scheme input for Ds/D0. The values for Z and ns are taken
from rows 1, 3, 7, 10, 14, and 20 of Table I and are kept
constant for varying φ. The lowermost two solid red curves
in panel (a) are nearly coincident owing to the very similar
values of Z and ns in rows 14 and 20 of the table. For the
same reason, the third and fourth solid red curve as counted
from the bottom of panel (a) are nearly coincident. No the-
oretical curve for Dc/D0 passes through the rightmost filled
square in panel (a) of Fig. 8, corresponding to a sample of
volume fraction φ = 0.36, for the earlier discussed reason
that the PA-scheme input for Ds/D0 is not applicable at such a
large volume fraction.

We discuss now the results for Ds in Fig. 8 (see panel
(b)). The triangles and squares are the PA-scheme results for
Ds/D0, except for the PA1117 sample at φnom = 0.32 (right-
most squares). Since the PA-scheme result for Ds/D0 are not
reliable at large φ, for samples with φnom = 0.32 we have
treated Ds/D0 simply as a fit parameter determined by match-
ing H

δγ

d (Q) + Ds/D0 to the experimental H(Q), three of
which are depicted in panels (g)–(i) of Fig. 7.

The lower limiting boundary for the Ds/D0 of charged
particles with HSY pair interaction is provided by the neu-
tral hard-sphere virial result in Eq. (15) (dashed blue curve
in panel (b)) of Fig. 8). Electrostatic repulsion disfavors near-
contact particle configurations, thereby suppressing near-field
HIs and causing Ds/D0 to grow with increasing interaction pa-
rameter γ and decreasing screening parameter k. The values
for Ds/D0 of strongly repelling HSY-type particles are limited
from above by the φ-scaling form

Dmax
s

D0
= 1 − atφ

4/3, (19)

of fractional exponent 4/3, and with coefficient at ≈ 2.5 − 2.9,
depending to some extend on particle charge and size.14, 25, 71

Equation (19) has been derived on basis of leading-order far-
field HIs contributions only, giving therefore a lower estimate
for the hydrodynamic slowing of self-diffusion. The exponent
4/3 is a consequence of the rmax

m ∝ φ−1/3 scaling of the nearest
neighbor cage radius. The solid red line in panel (b) of Fig. 8
represents Eq. (19) for at = 2.5.

We finally discuss the concentration dependence of
H(Qm) depicted in panel (c) of Fig. 8. Like S(Q), the hydro-
dynamic function has its maximum at Q ≈ Qm. The peak
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value H(Qm) quantifies the influence of HIs on the kinetic
part of short-time concentration fluctuations with wavelength
comparable to the nearest neighbor cage radius. The cage-
diffusion coefficient, Dcge = D(Qm), is lowered by HIs when
H(Qm) < 1, and enhanced when H(Qm) > 1. Like S(Qm),
H(Qm) is largest for the lowest electrolyte concentration.
From Fig. 7, from panel (c) of Fig. 8, and from Table I we
note that H(Qm) < 1 for nearly all PA1117 samples where
φnom ≥ 0.08. The only exception is made by the sample with
φnom = 0.08 and nnom

s = 0, where H(Qm) = 1.03 (not shown
in Fig. 7). In contrast, values H(Qm) > 1 are observed for all
PA542 samples with φnom ≤ 0.008.

Our experimental observation of the hydrodynamic en-
hancement of H(Qm) at low salinity is in accord with our the-
oretical predictions (solid red lines in Fig. 6). It is also in line
with experimental, simulation, and theory results for the H(Q)
of charged colloidal particles reported elsewhere.11, 17–25 In
particular, no unusually small, so-called ultra slow values of
H(Qm), as reported in Ref. 72 in conflict with the theoretical
predictions, have been found in our study.

A lower limiting curve for H(Qm) is provided by the first-
order virial result,

H HS(Qm) = 1 − 1.35φ, (20)

for neutral hard spheres. It has been shown11, 22, 73 that this lin-
ear form describes the peak height excellently even up to the
hard-sphere freezing transition concentration. Equation (20)
is depicted by the dashed blue line in panel (c) of Fig. 8.

An upper limiting curve for the H(Qm) of HSY-type parti-
cles has been obtained in Ref. 24. It is represented by the red
solid curve in panel (c) of Fig. 8. This upper limiting curve
has been constructed using the δγ -scheme with RMSA static
structure factor input, by sampling over the full set of pair po-
tential parameters (γ , k, and φ) in the liquid-phase regime,
and using the empirical Hansen-Verlet criterion value, S(Qm)
≈ 3.1, for the onset of freezing of strongly repelling charged
particles.74–77 The limiting curve is not appreciably changed
when in place of the RMSA S(Q), the more accurate MPB-
RMSA or Rogers-Young S(Q)’s are used as static input.

Nearly all our experimentally determined hydrodynamic
function peak values are located between the discussed up-
per and lower limiting curves. Only for the two samples with
φnom = 0.32, and ns = 5 and 10 mM, does H(Qm) slightly un-
dershoot the hard-sphere limiting curve. For these two sam-
ples, φ obtained by the model fit to S(Q) is also slightly
smaller than the experimental value φnom = 0.32. Thus, the
observed slight undershooting is likely due to some inaccu-
racy in the actual volume fraction.

VI. CONCLUSIONS

We have presented a comprehensive experimental-
theoretical study of the equilibrium microstructure and
wavenumber-resolved short-time diffusion properties in aque-
ous suspensions of charged PA spheres, representative of
charge-stabilized colloidal suspensions. In the synthesis and
preparation of our samples, the parameters R0, �R/R0, φnom,
and nnom

s have been varied over broad ranges, so that essen-
tially the complete fluid phase regime has been explored.

For the less concentrated samples, we have collected
scattering data using experimentally less demanding static
and dynamic light scattering experiments. For the more con-
centrated, opaque-looking samples, where light scattering ex-
periments are infeasible due to multiple scattering, we have
recorded SAXS and XPCS data for colloid volume fractions
up to φ = 0.32, in an extended range of wavenumbers includ-
ing all essential features of S(Q) and H(Q). The x-ray scat-
tering experiments were conducted in laminar flow to avoid
radiation damage of the samples.

The recently developed analytic MPB-RMSA method for
calculating S(Q) of charged colloidal particles was used for
a detailed analysis of the visible light- and x-ray scattering
data, from which we have obtained quite accurate results for
the colloidal volume fraction, φ, and effective charge number
Z(φ, ns). Using the self-part corrected δγ -scheme with MPB-
RMSA input for S(Q), we have obtained quite accurate re-
sults for the diffusion function D(Q) = D0H(Q)/S(Q), includ-
ing the short-time collective and self-diffusion coefficients Dc

and Ds, and the cage diffusion coefficient Dcge = D0 H (Qm)
as special cases. The results of the analytic theory are over-
all in very good agreement with the DLS/XPCS-determined
hydrodynamic functions, for nominal volume fractions φnom

≤ 0.16.
The analytic calculations are based on the purely repul-

sive, HSY-type pair potential consisting of the electrostatic
part of the DLVO potential and an impermeable hard core.
The static and short-time dynamics scattering data for the less
polydisperse PA1117 samples with �R/R0 ≈ 0.057 are well de-
scribed by the theoretically predicted ideal static structure fac-
tor S(Q) and hydrodynamic function, H(Q), of monodisperse
HSY-like spheres. For the more polydisperse PA542 samples
where �R/R0 = 0.121, the inclusion of incoherent scatter-
ing contributions within the decoupling approximation has
significantly improved the quality of the structure factor fits,
with practically quantitative agreement between the experi-
mental curves and the decoupling approximation predictions
for Sm(Q) ≈ Sd

m(Q) and Hm(Q) ≈ Hd
m(Q).

We find that the modified δγ -scheme becomes less ac-
curate for the most concentrated samples (at φnom ≈ 0.32),
at low salinities nnom

s � 5 mM. For these samples, no sat-
isfactory analytical theoretical scheme has been developed
so far that allows for an accurate prediction of Ds/D0. At
high salinities, however, Eq. (15) can be used for the self-
diffusion part of H(Q) of the two PA1117 samples at the largest
considered φnom.

Our extensive experimental results have allowed us to
study in detail the φ- and ns-dependencies of the nearest
neighbor cage radius Rm. In agreement with earlier theoretical
predictions, we find Rm to be proportional to φ−1/3 at very low
values of ns only. For the low-salinity samples where this sim-
ple geometric scaling applies, the principal peak wavenumber,
Qm, is to good accuracy equal to 2.2π /Rm.

Also in agreement with theoretical predictions, our ex-
perimental findings for Dc/D0, Ds/D0, and H(Qm) are confined
from above and below by the limiting concentration scaling
forms for neutral hard spheres and strongly repelling HSY-
type particles, respectively. The theoretically predicted hydro-
dynamical enhancement of cage-diffusion (H(Qm) > 1) for
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low-concentrated systems at low salinity is confirmed by our
experimental data.
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NOMENCLATURE

DLS Dynamic light scattering54

DLVO Derjaguin-Landau-Verwey-Overbeek (DLVO)
pair potential35

HIs Hydrodynamic interactions11, 14, 57, 58, 60–64

HS Uncharged, non-overlapping hard spheres with
hydrodynamic stick (i.e., no-slip) surfaces

HSY Hard-sphere plus repulsive Yukawa (pair
potential)

MPB- Modified penetrating background-corrected
RMSA rescaled mean spherical approximation9, 10

PA Poly-acrylate
PA-scheme Approximation of pairwise additive HIs11, 14, 25

SAXS Small angle x-ray scattering29, 30

SLS Static light scattering54

vdW van der Waals
XPCS X-ray photon correlation spectroscopy5, 7

Roman

D(Q) Ideal short-time diffusion function for a sus-
pension of monodisperse spheres14, 57

Dm(Q) Measurable short-time diffusion function for a
suspension of polydisperse spheres14

Dc Collective diffusion coefficient, Dc = D(Q
→ 0)

Dcge Cage diffusion coefficient, Dcge = D(Qm)
Ds Self-diffusion coefficient, Ds = D(Q → ∞)
D0 Translational free diffusion coefficient of a sin-

gle sphere with hydrodynamic stick (i.e., no-
slip) surface boundary conditions in an infinite
quiescent fluid

g(r) Radial pair-distribution function55

g1(Q, τ ) Normalized field autocorrelation function54

g2(Q, τ ) Normalized intensity autocorrelation
function54

G(Q, τ ) Self-intermediate scattering function55, 56

H(Q) Ideal hydrodynamic function for a suspension
of monodisperse spheres14, 57

Hd(Q) Distinct part of the ideal hydrodynamic func-
tion, Hd(Q) = H(q) − Ds/D0

Hm(Q) Measurable hydrodynamic function for a sus-
pension of polydisperse spheres14

Hd
m(Q) Measurable hydrodynamic function in decou-

pling approximation14

k Yukawa screening parameter (inverse Debye
screening length)35, 47, 48

LB Solvent-characteristic Bjerrum length
ns Number concentration of 1-1 electrolyte pairs

in the solvent, includes added salt, water
self-dissociation products, and adsorbed CO2,
excludes counterions released from colloid
surfaces

nnom
s Experimentally selected (nominal) salt

concentration
PA542 Batch of PA spherical particles with R0

= 542 Å and �R/R0 = 0.121
PA1117 Batch of PA spherical particles with R0

= 1117 Å and �R/R0 = 0.057
Pm(Q) Size-averaged particle form factor32

Q Scattering wavenumber, i.e., magnitude of
scattering wavevector Q

Qm Scattering wavenumber at which the principal
peaks in S(Q) and H(Q) occur

r Colloidal center-to-center distance
rm Principal peak position of g(r)
Rm Nearest neighbor shell radius, Rm = rm

R0 Mean hard-core radius of colloidal spherical
particles

S(Q) Ideal static structure factor for a suspension of
monodisperse spheres55

Sm(Q) Measurable static structure factor for a suspen-
sion of polydisperse spheres14

Sd
m(Q) Measurable colloidal static structure factor in

decoupling approximation14

S(Q, τ ) Intermediate scattering function55

u(x) Pair potential of direct colloidal interactions in
units of x = r/(2R0)

W (τ ) Colloidal mean squared displacement divided
by factor 614

x Dimensionless separation of colloidal particle
centers, x = r/(2R0)

X(Q) Decoupling amplitude factor14

Z Colloidal effective charge number36–46

Greek

β Inverse thermal energy. β = 1/(kBT)
β(Q) Speckle contrast54

γ Yukawa coupling parameter35

δγ -scheme Renormalized concentration fluctuation expan-
sion method of Beenakker and Mazur58–60

�R/R0 Relative standard deviation of the colloidal
hard-core radius (polydispersity)

ε Zero-frequency solvent dielectric constant
τ Correlation time in time-resolved scattering

experiments54

τB Colloidal momentum relaxation time14, 57

τH Hydrodynamic vorticity diffusion time14, 57

τ I Colloidal interaction time14, 57

φ Particle volume fraction
φnom Experimentally selected (nominal) particle vol-

ume fraction
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