000230898 001__ 230898
000230898 005__ 20210129220443.0
000230898 0247_ $$2doi$$a10.1063/1.4930881
000230898 0247_ $$2ISSN$$a0003-6951
000230898 0247_ $$2ISSN$$a1077-3118
000230898 0247_ $$2WOS$$aWOS:000361640200013
000230898 0247_ $$2Handle$$a2128/17316
000230898 037__ $$aFZJ-2015-05625
000230898 082__ $$a530
000230898 1001_ $$0P:(DE-HGF)0$$aRubano, Andrea$$b0
000230898 245__ $$aPolar asymmetry of La(1−δ)Al(1+δ)O3/SrTiO3 heterostructures probed by optical second harmonic generation
000230898 260__ $$aMelville, NY$$bAmerican Inst. of Physics$$c2015
000230898 3367_ $$2DRIVER$$aarticle
000230898 3367_ $$2DataCite$$aOutput Types/Journal article
000230898 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1443170170_336
000230898 3367_ $$2BibTeX$$aARTICLE
000230898 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000230898 3367_ $$00$$2EndNote$$aJournal Article
000230898 520__ $$aBy combining transport measurements and optical second harmonic generation, we have investigated heterostructures formed between crystalline thin films of LaAlO3, with varyingstoichiometry and TiO2-terminated SrTiO3(001) substrates. Optical second harmonic generationdirectly probes the polarity of these heterostructures, thus complementing the transport data. Thestoichiometry and the growth temperature are found to be critical parameters for controlling boththe interfacial conductivity and the heterostructure polarity. In agreement with the previous work,all of the samples display an insulator-to-metal transition in the Al-reach region, with the conductivityfirst increasing and then saturating at the highest Al/La ratios. The second harmonic signalalso increases as a function of the Al/La ratio, but, at the highest growth temperature, it does notsaturate. This unusual behavior is consistent with the formation of an ordered structure of defectdipoles in the LaAlO3 film caused by the off-centering of excess Al atoms in agreement with thetheory.
000230898 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000230898 588__ $$aDataset connected to CrossRef
000230898 7001_ $$0P:(DE-HGF)0$$aDe Luca, Gabriele$$b1
000230898 7001_ $$0P:(DE-Juel1)128631$$aSchubert, Jürgen$$b2
000230898 7001_ $$0P:(DE-HGF)0$$aWang, Zhe$$b3
000230898 7001_ $$0P:(DE-HGF)0$$aZhu, Shaobo$$b4
000230898 7001_ $$0P:(DE-HGF)0$$aSchlom, Darrell G.$$b5
000230898 7001_ $$0P:(DE-HGF)0$$aMarrucci, Lorenzo$$b6
000230898 7001_ $$0P:(DE-HGF)0$$aPaparo, Domenico$$b7$$eCorresponding author
000230898 773__ $$0PERI:(DE-600)1469436-0$$a10.1063/1.4930881$$gVol. 107, no. 10, p. 101603 -$$n10$$p101603 -$$tApplied physics letters$$v107$$x1077-3118$$y2015
000230898 8564_ $$uhttp://scitation.aip.org/content/aip/journal/apl/107/10/10.1063/1.4930881
000230898 8564_ $$uhttps://juser.fz-juelich.de/record/230898/files/1.4930881-1.pdf$$yOpenAccess
000230898 8564_ $$uhttps://juser.fz-juelich.de/record/230898/files/1.4930881-1.gif?subformat=icon$$xicon$$yOpenAccess
000230898 8564_ $$uhttps://juser.fz-juelich.de/record/230898/files/1.4930881-1.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000230898 8564_ $$uhttps://juser.fz-juelich.de/record/230898/files/1.4930881-1.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000230898 8564_ $$uhttps://juser.fz-juelich.de/record/230898/files/1.4930881-1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000230898 909CO $$ooai:juser.fz-juelich.de:230898$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000230898 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128631$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000230898 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000230898 9141_ $$y2015
000230898 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000230898 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL PHYS LETT : 2014
000230898 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000230898 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000230898 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000230898 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000230898 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000230898 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000230898 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000230898 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000230898 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000230898 920__ $$lyes
000230898 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x0
000230898 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x1
000230898 980__ $$ajournal
000230898 980__ $$aVDB
000230898 980__ $$aUNRESTRICTED
000230898 980__ $$aI:(DE-82)080009_20140620
000230898 980__ $$aI:(DE-Juel1)PGI-9-20110106
000230898 9801_ $$aFullTexts
000230898 981__ $$aI:(DE-Juel1)PGI-9-20110106