001     23113
005     20240619092107.0
024 7 _ |2 pmid
|a pmid:22339872
024 7 _ |2 pmc
|a pmc:PMC3260689
024 7 _ |2 DOI
|a 10.1016/j.bpj.2011.12.031
024 7 _ |2 WOS
|a WOS:000299244100021
037 _ _ |a PreJuSER-23113
041 _ _ |a eng
082 _ _ |a 570
084 _ _ |2 WoS
|a Biophysics
100 1 _ |0 P:(DE-Juel1)VDB78506
|a Stadler, A.M.
|b 0
|u FZJ
245 _ _ |a Dynamics-Stability Relationships in Apo-and Holomyoglobin: A Combined Neutron Scattering and Molecular Dynamics Simulations Study
260 _ _ |a New York, NY
|b Rockefeller Univ. Press
|c 2012
300 _ _ |a 351 - 359
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 882
|a Biophysical Journal
|v 102
|x 0006-3495
|y 2
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a The removal of the heme group from myoglobin (Mb) results in a destabilization of the protein structure. The dynamic basis of the destabilization was followed by comparative measurements on holo- (holo-Mb) and apomyoglobin (apo-Mb). Mean-squared displacements (MSD) and protein resilience on the picosecond-to-nanosecond timescale were measured by elastic incoherent neutron scattering. Differences in thermodynamic parameters, MSD, and resilience were observed for both proteins. The resilience of holo-Mb was significantly lower than that of apo-Mb, indicating entropic stabilization by a higher degree of conformational sampling in the heme-bound folded protein. Molecular dynamics simulations provided site-specific information. Averaged over the whole structure, the molecular dynamics simulations yielded similar MSD and resilience values for the two proteins. The mobility of residues around the heme group in holo-Mb showed a smaller MSD and higher resilience compared to the same residue group in apo-Mb. It is of interest that in holo-Mb, higher MSD values are observed for the residues outside the heme pocket, indicating an entropic contribution to protein stabilization by heme binding, which is in agreement with experimental results.
536 _ _ |0 G:(DE-Juel1)FUEK505
|2 G:(DE-HGF)
|x 0
|c FUEK505
|a BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung (FUEK505)
536 _ _ |0 G:(DE-HGF)POF2-544
|a 544 - In-house Research with PNI (POF2-544)
|c POF2-544
|f POF II
|x 1
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Animals
650 _ 2 |2 MeSH
|a Apoproteins: chemistry
650 _ 2 |2 MeSH
|a Entropy
650 _ 2 |2 MeSH
|a Heme: chemistry
650 _ 2 |2 MeSH
|a Horses
650 _ 2 |2 MeSH
|a Molecular Dynamics Simulation
650 _ 2 |2 MeSH
|a Myoglobin: chemistry
650 _ 2 |2 MeSH
|a Neutron Diffraction
650 _ 2 |2 MeSH
|a Protein Stability
650 _ 2 |2 MeSH
|a Protein Unfolding
650 _ 2 |2 MeSH
|a Time Factors
650 _ 2 |2 MeSH
|a Transition Temperature
650 _ 7 |0 0
|2 NLM Chemicals
|a Apoproteins
650 _ 7 |0 0
|2 NLM Chemicals
|a Myoglobin
650 _ 7 |0 14875-96-8
|2 NLM Chemicals
|a Heme
650 _ 7 |2 WoSType
|a J
700 1 _ |0 P:(DE-HGF)0
|a Pellegrini, E.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Johnson, M.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Fitter, J.
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Zaccai, G.
|b 4
773 _ _ |0 PERI:(DE-600)1477214-0
|a 10.1016/j.bpj.2011.12.031
|g Vol. 102, p. 351 - 359
|n 2
|p 351 - 359
|q 102<351 - 359
|t Biophysical journal
|v 102
|x 0006-3495
|y 2012
856 7 _ |2 Pubmed Central
|u http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3260689
909 C O |o oai:juser.fz-juelich.de:23113
|p VDB
913 2 _ |0 G:(DE-HGF)POF3-552
|1 G:(DE-HGF)POF3-550
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l BioSoft Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|v Engineering Cell Function
|x 0
913 2 _ |0 G:(DE-HGF)POF3-623
|1 G:(DE-HGF)POF3-620
|2 G:(DE-HGF)POF3-600
|a DE-HGF
|b Forschungsbereich Materie
|l In-house research on the structure, dynamics and function of matter
|v Neutrons for Research on Condensed Matter
|x 1
913 1 _ |x 0
|v In-house Research with PNI
|1 G:(DE-HGF)POF2-540
|0 G:(DE-HGF)POF2-544
|2 G:(DE-HGF)POF2-500
|a DE-HGF
|b Struktur der Materie
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Forschung mit Photonen, Neutronen, Ionen
914 1 _ |y 2012
915 _ _ |0 StatID:(DE-HGF)0010
|2 StatID
|a JCR/ISI refereed
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)1030
|2 StatID
|a DBCoverage
|b Current Contents - Life Sciences
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
920 1 _ |0 I:(DE-Juel1)ICS-1-20110106
|g ICS
|k ICS-1
|l Neutronenstreuung
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-1-20110106
|g JCNS
|k JCNS-1
|l Neutronenstreuung
|x 1
920 1 _ |0 I:(DE-Juel1)ICS-5-20110106
|k ICS-5
|l Molekulare Biophysik
|x 2
970 _ _ |a VDB:(DE-Juel1)140038
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ICS-1-20110106
980 _ _ |a I:(DE-Juel1)JCNS-1-20110106
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-5-20110106
981 _ _ |a I:(DE-Juel1)IBI-8-20200312
981 _ _ |a I:(DE-Juel1)JCNS-1-20110106
981 _ _ |a I:(DE-Juel1)IBI-6-20200312
981 _ _ |a I:(DE-Juel1)ER-C-3-20170113
981 _ _ |a I:(DE-Juel1)ICS-5-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21