000023114 001__ 23114
000023114 005__ 20240619092052.0
000023114 0247_ $$2pmid$$apmid:22696485
000023114 0247_ $$2pmc$$apmc:PMC3479923
000023114 0247_ $$2DOI$$a10.1098/rsif.2012.0364
000023114 0247_ $$2WOS$$aWOS:000309269100010
000023114 0247_ $$2MLZ$$aStadler07112012
000023114 0247_ $$2altmetric$$aaltmetric:1304740
000023114 037__ $$aPreJuSER-23114
000023114 041__ $$aeng
000023114 082__ $$a500
000023114 084__ $$2WoS$$aMultidisciplinary Sciences
000023114 1001_ $$0P:(DE-Juel1)VDB78506$$aStadler, A.M.$$b0$$uFZJ
000023114 245__ $$aThermal fluctuations of haemoglobin from different species: adaptation to temperature via conformational dynamics
000023114 260__ $$aLondon$$bThe Royal Society$$c2012
000023114 300__ $$a2845 - 2855
000023114 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000023114 3367_ $$2DataCite$$aOutput Types/Journal article
000023114 3367_ $$00$$2EndNote$$aJournal Article
000023114 3367_ $$2BibTeX$$aARTICLE
000023114 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000023114 3367_ $$2DRIVER$$aarticle
000023114 440_0 $$017801$$aJournal of the Royal Society Interface$$v9$$x1742-5689$$y76
000023114 500__ $$aPlatypus RBC was provided by Nick Gust (Department of Primary Industries Tasmania, Australia) and Dominic Geraghty (University of Tasmania, Australia). Crocodile blood was provided by Crocodylus Park (Darwin, Australia). We thank Prof. Philip Kuchel (University of Sydney, Australia) for the use of his laboratory to purify crocodile and platypus Hb. Chicken blood was provided by Mario Suarez Avello and Josefa Garcia Alvarez. I. D. was sponsored by the BMBF Programme 'FHProfUnd' grant no. 1736X08. We also thank the Ministry of Innovation Science and Research of the federal state North Rhine-Westphalia for supporting Prof. Aysegul (Temiz) Artmann's project Dynamischer Strukturubergang bei Korpertemperaturen (FKZ: 800 009 04). A. M. S. thanks Prof. Georg Buldt and Prof. Dieter Richter for continuous support. This work is based on experiments performed at the Institute Laue-Langevin (ILL), Grenoble, France, and at the Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II), Garching, Germany.
000023114 520__ $$aThermodynamic stability, configurational motions and internal forces of haemoglobin (Hb) of three endotherms (platypus, Ornithorhynchus anatinus; domestic chicken, Gallus gallus domesticus and human, Homo sapiens) and an ectotherm (salt water crocodile, Crocodylus porosus) were investigated using circular dichroism, incoherent elastic neutron scattering and coarse-grained Brownian dynamics simulations. The experimental results from Hb solutions revealed a direct correlation between protein resilience, melting temperature and average body temperature of the different species on the 0.1 ns time scale. Molecular forces appeared to be adapted to permit conformational fluctuations with a root mean square displacement close to 1.2 Å at the corresponding average body temperature of the endotherms. Strong forces within crocodile Hb maintain the amplitudes of motion within a narrow limit over the entire temperature range in which the animal lives. In fully hydrated powder samples of human and chicken, Hb mean square displacements and effective force constants on the 1 ns time scale showed no differences over the whole temperature range from 10 to 300 K, in contrast to the solution case. A complementary result of the study, therefore, is that one hydration layer is not sufficient to activate all conformational fluctuations of Hb in the pico- to nanosecond time scale which might be relevant for biological function. Coarse-grained Brownian dynamics simulations permitted to explore residue-specific effects. They indicated that temperature sensing of human and chicken Hb occurs mainly at residues lining internal cavities in the β-subunits.
000023114 536__ $$0G:(DE-Juel1)FUEK505$$2G:(DE-HGF)$$aBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$cP45$$x0
000023114 536__ $$0G:(DE-HGF)POF2-544$$a544 - In-house Research with PNI (POF2-544)$$cPOF2-544$$fPOF II$$x3
000023114 588__ $$aDataset connected to Web of Science, Pubmed
000023114 65320 $$2Author$$ahaemoglobin
000023114 65320 $$2Author$$athermodynamic stability
000023114 65320 $$2Author$$aprotein dynamics
000023114 65320 $$2Author$$aincoherent neutron scattering
000023114 65320 $$2Author$$acoarse-grained Brownian dynamics simulations
000023114 65320 $$2Author$$acircular dichroism
000023114 650_7 $$2WoSType$$aJ
000023114 65027 $$0V:(DE-MLZ)SciArea-160$$2V:(DE-HGF)$$aBiology$$x0
000023114 65017 $$0V:(DE-MLZ)GC-130-2016$$2V:(DE-HGF)$$aHealth and Life$$x1
000023114 65017 $$0V:(DE-MLZ)GC-130-1$$2V:(DE-HGF)$$aHealth and Life$$x0
000023114 693__ $$0EXP:(DE-MLZ)SPHERES-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)SPHERES-20140101$$6EXP:(DE-MLZ)NL6S-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz$$eSPHERES: Backscattering spectrometer$$fNL6S$$x0
000023114 7001_ $$0P:(DE-HGF)0$$aGarvey, C.J.$$b1
000023114 7001_ $$0P:(DE-HGF)0$$aBocahut, A.$$b2
000023114 7001_ $$0P:(DE-HGF)0$$aSacquin-Mora, S.$$b3
000023114 7001_ $$0P:(DE-HGF)0$$aDigel, I.$$b4
000023114 7001_ $$0P:(DE-Juel1)VDB96975$$aSchneider, G.J.$$b5$$uFZJ
000023114 7001_ $$0P:(DE-HGF)0$$aNatali, F.$$b6
000023114 7001_ $$0P:(DE-HGF)0$$aArtmann, G.M.$$b7
000023114 7001_ $$0P:(DE-HGF)0$$aZaccai, G.$$b8
000023114 773__ $$0PERI:(DE-600)2156283-0$$a10.1098/rsif.2012.0364$$gVol. 9, p. 2845 - 2855$$p2845 - 2855$$q9<2845 - 2855$$tInterface$$v9$$x1742-5689$$y2012
000023114 8567_ $$2Pubmed Central$$uhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC3479923
000023114 909CO $$ooai:juser.fz-juelich.de:23114$$pVDB$$pVDB:MLZ
000023114 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000023114 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000023114 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000023114 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000023114 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000023114 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000023114 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000023114 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000023114 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000023114 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000023114 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000023114 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000023114 9141_ $$y2012
000023114 9131_ $$0G:(DE-Juel1)FUEK505$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$kP45$$lBiologische Informationsverarbeitung$$vBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$x0
000023114 9131_ $$0G:(DE-HGF)POF2-54G24$$1G:(DE-HGF)POF2-540$$2G:(DE-HGF)POF2-500$$aDE-HGF$$bStruktur der Materie$$lForschung mit Photonen, Neutronen und Ionen (PNI)$$vIn-house Research with PNI$$x1
000023114 9132_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lBioSoft Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0
000023114 9132_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$aDE-HGF$$bForschungsbereich Materie$$lIn-house research on the structure, dynamics and function of matter$$vNeutrons for Research on Condensed Matter$$x1
000023114 9201_ $$0I:(DE-Juel1)ICS-1-20110106$$gICS$$kICS-1$$lNeutronenstreuung$$x0
000023114 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$gJCNS$$kJCNS-1$$lNeutronenstreuung$$x1
000023114 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II$$lJCNS-FRM-II$$x2
000023114 970__ $$aVDB:(DE-Juel1)140039
000023114 980__ $$aVDB
000023114 980__ $$aConvertedRecord
000023114 980__ $$ajournal
000023114 980__ $$aI:(DE-Juel1)ICS-1-20110106
000023114 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000023114 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000023114 980__ $$aUNRESTRICTED
000023114 981__ $$aI:(DE-Juel1)IBI-8-20200312
000023114 981__ $$aI:(DE-Juel1)JCNS-1-20110106
000023114 981__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218