001     23114
005     20240619092052.0
024 7 _ |2 pmid
|a pmid:22696485
024 7 _ |2 pmc
|a pmc:PMC3479923
024 7 _ |2 DOI
|a 10.1098/rsif.2012.0364
024 7 _ |2 WOS
|a WOS:000309269100010
024 7 _ |2 MLZ
|a Stadler07112012
024 7 _ |a altmetric:1304740
|2 altmetric
037 _ _ |a PreJuSER-23114
041 _ _ |a eng
082 _ _ |a 500
084 _ _ |2 WoS
|a Multidisciplinary Sciences
100 1 _ |0 P:(DE-Juel1)VDB78506
|a Stadler, A.M.
|b 0
|u FZJ
245 _ _ |a Thermal fluctuations of haemoglobin from different species: adaptation to temperature via conformational dynamics
260 _ _ |a London
|b The Royal Society
|c 2012
300 _ _ |a 2845 - 2855
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 17801
|a Journal of the Royal Society Interface
|v 9
|x 1742-5689
|y 76
500 _ _ |a Platypus RBC was provided by Nick Gust (Department of Primary Industries Tasmania, Australia) and Dominic Geraghty (University of Tasmania, Australia). Crocodile blood was provided by Crocodylus Park (Darwin, Australia). We thank Prof. Philip Kuchel (University of Sydney, Australia) for the use of his laboratory to purify crocodile and platypus Hb. Chicken blood was provided by Mario Suarez Avello and Josefa Garcia Alvarez. I. D. was sponsored by the BMBF Programme 'FHProfUnd' grant no. 1736X08. We also thank the Ministry of Innovation Science and Research of the federal state North Rhine-Westphalia for supporting Prof. Aysegul (Temiz) Artmann's project Dynamischer Strukturubergang bei Korpertemperaturen (FKZ: 800 009 04). A. M. S. thanks Prof. Georg Buldt and Prof. Dieter Richter for continuous support. This work is based on experiments performed at the Institute Laue-Langevin (ILL), Grenoble, France, and at the Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II), Garching, Germany.
520 _ _ |a Thermodynamic stability, configurational motions and internal forces of haemoglobin (Hb) of three endotherms (platypus, Ornithorhynchus anatinus; domestic chicken, Gallus gallus domesticus and human, Homo sapiens) and an ectotherm (salt water crocodile, Crocodylus porosus) were investigated using circular dichroism, incoherent elastic neutron scattering and coarse-grained Brownian dynamics simulations. The experimental results from Hb solutions revealed a direct correlation between protein resilience, melting temperature and average body temperature of the different species on the 0.1 ns time scale. Molecular forces appeared to be adapted to permit conformational fluctuations with a root mean square displacement close to 1.2 Å at the corresponding average body temperature of the endotherms. Strong forces within crocodile Hb maintain the amplitudes of motion within a narrow limit over the entire temperature range in which the animal lives. In fully hydrated powder samples of human and chicken, Hb mean square displacements and effective force constants on the 1 ns time scale showed no differences over the whole temperature range from 10 to 300 K, in contrast to the solution case. A complementary result of the study, therefore, is that one hydration layer is not sufficient to activate all conformational fluctuations of Hb in the pico- to nanosecond time scale which might be relevant for biological function. Coarse-grained Brownian dynamics simulations permitted to explore residue-specific effects. They indicated that temperature sensing of human and chicken Hb occurs mainly at residues lining internal cavities in the β-subunits.
536 _ _ |0 G:(DE-Juel1)FUEK505
|2 G:(DE-HGF)
|a BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|c P45
|x 0
536 _ _ |0 G:(DE-HGF)POF2-544
|a 544 - In-house Research with PNI (POF2-544)
|c POF2-544
|f POF II
|x 3
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 7 |2 WoSType
|a J
650 2 7 |a Biology
|0 V:(DE-MLZ)SciArea-160
|2 V:(DE-HGF)
|x 0
650 1 7 |a Health and Life
|0 V:(DE-MLZ)GC-130-2016
|2 V:(DE-HGF)
|x 1
650 1 7 |a Health and Life
|0 V:(DE-MLZ)GC-130-1
|2 V:(DE-HGF)
|x 0
653 2 0 |2 Author
|a haemoglobin
653 2 0 |2 Author
|a thermodynamic stability
653 2 0 |2 Author
|a protein dynamics
653 2 0 |2 Author
|a incoherent neutron scattering
653 2 0 |2 Author
|a coarse-grained Brownian dynamics simulations
653 2 0 |2 Author
|a circular dichroism
693 _ _ |0 EXP:(DE-MLZ)SPHERES-20140101
|1 EXP:(DE-MLZ)FRMII-20140101
|5 EXP:(DE-MLZ)SPHERES-20140101
|6 EXP:(DE-MLZ)NL6S-20140101
|a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e SPHERES: Backscattering spectrometer
|f NL6S
|x 0
700 1 _ |0 P:(DE-HGF)0
|a Garvey, C.J.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Bocahut, A.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Sacquin-Mora, S.
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Digel, I.
|b 4
700 1 _ |0 P:(DE-Juel1)VDB96975
|a Schneider, G.J.
|b 5
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Natali, F.
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Artmann, G.M.
|b 7
700 1 _ |0 P:(DE-HGF)0
|a Zaccai, G.
|b 8
773 _ _ |0 PERI:(DE-600)2156283-0
|a 10.1098/rsif.2012.0364
|g Vol. 9, p. 2845 - 2855
|p 2845 - 2855
|q 9<2845 - 2855
|t Interface
|v 9
|x 1742-5689
|y 2012
856 7 _ |2 Pubmed Central
|u http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3479923
909 C O |o oai:juser.fz-juelich.de:23114
|p VDB:MLZ
|p VDB
913 1 _ |0 G:(DE-Juel1)FUEK505
|1 G:(DE-HGF)POF2-450
|2 G:(DE-HGF)POF2-400
|a DE-HGF
|b Schlüsseltechnologien
|k P45
|l Biologische Informationsverarbeitung
|v BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|x 0
913 1 _ |0 G:(DE-HGF)POF2-54G24
|1 G:(DE-HGF)POF2-540
|2 G:(DE-HGF)POF2-500
|a DE-HGF
|b Struktur der Materie
|l Forschung mit Photonen, Neutronen und Ionen (PNI)
|v In-house Research with PNI
|x 1
913 2 _ |0 G:(DE-HGF)POF3-552
|1 G:(DE-HGF)POF3-550
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l BioSoft Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|v Engineering Cell Function
|x 0
913 2 _ |0 G:(DE-HGF)POF3-623
|1 G:(DE-HGF)POF3-620
|2 G:(DE-HGF)POF3-600
|a DE-HGF
|b Forschungsbereich Materie
|l In-house research on the structure, dynamics and function of matter
|v Neutrons for Research on Condensed Matter
|x 1
914 1 _ |y 2012
915 _ _ |0 StatID:(DE-HGF)0010
|2 StatID
|a JCR/ISI refereed
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)1030
|2 StatID
|a DBCoverage
|b Current Contents - Life Sciences
915 _ _ |0 StatID:(DE-HGF)1040
|2 StatID
|a DBCoverage
|b Zoological Record
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
920 1 _ |0 I:(DE-Juel1)ICS-1-20110106
|g ICS
|k ICS-1
|l Neutronenstreuung
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-1-20110106
|g JCNS
|k JCNS-1
|l Neutronenstreuung
|x 1
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II
|l JCNS-FRM-II
|x 2
970 _ _ |a VDB:(DE-Juel1)140039
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ICS-1-20110106
980 _ _ |a I:(DE-Juel1)JCNS-1-20110106
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-8-20200312
981 _ _ |a I:(DE-Juel1)JCNS-1-20110106
981 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21