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Abstract: Scale setting is of central importance in lattice QCD. It is required to pre-

dict dimensional quantities in physical units. Moreover, it determines the relative lattice

spacings of computations performed at different values of the bare coupling, and this is

needed for extrapolating results into the continuum. Thus, we calculate a new quantity,

w0, for setting the scale in lattice QCD, which is based on the Wilson flow like the scale

t0 (M. Luscher, JHEP 08 (2010) 071). It is cheap and straightforward to implement and

compute. In particular, it does not involve the delicate fitting of correlation functions at

asymptotic times. It typically can be determined on the few per-mil level. We compute its

continuum extrapolated value in 2 + 1-flavor QCD for physical and non-physical pion and

kaon masses, to allow for mass-independent scale setting even away from the physical mass

point. We demonstrate its robustness by computing it with two very different actions (one

of them with staggered, the other with Wilson fermions) and by showing that the results

agree for physical quark masses in the continuum limit.
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1 Introduction

Quantum chromodynamics (QCD) is a theory with few parameters: the quark masses and

an overall scale. To determine the latter, one has to compute a dimensionful quantity or

an observable at a known energy, and adjust the overall scale of the theory to reproduce

the corresponding experimental measurement. In lattice calculations this is equivalent to

fixing the lattice spacing a. The lattice spacing is determined by calculating a dimensionful

quantity Q — for definiteness, Q is chosen to be of mass dimension one here — such as the

mass of the Omega baryon, MΩ, or the pion decay constant, Fπ, and by relating its lattice

value to its experimental value through a = (aQ)latt/Qexpt. In principle any dimensionful

quantity can be used. However, it is clear that the quality of any dimensionful prediction

from the lattice can only be as good as the quality of the determination of the overall scale.

This statement is particularly relevant now that lattice QCD results with errors below 2%

are beginning to be reported.

Besides the overall scale in physical units, it is also important to accurately determine

the relative lattice spacings of simulations performed at different values of the bare coupling

in order to carry out a continuum extrapolation. Independent calculations can be compared

too, if dimensionful quantities are expressed in units of a well measured quantity. For this

purpose it may be useful to consider an observable which is not directly measured in

experiment, but which is particularly simple to compute with high accuracy. Moreover, if

this observable is computed accurately in physical units once, its value can be used in all

subsequent lattice calculations to fix their overall scales.

One popular observable of this type is the Sommer scale, r0, introduced nearly two

decades ago [1]. More recently, MILC has found it more convenient to consider the related

scale r1 [2]. One of the advantages of these scales is that they are based on the calculation

of the static potential from gauge fields: they do not require the costly computation of

quark propagators, as do observables such as MΩ or Fπ. However, the determination of
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Figure 1. Representative continuum extrapolations of the w0 scale, at the physical mass point.

The values at different lattice spacings are obtaind by using the Wilson flow described below. The

continuum limit values on the plots are results from our final, full analyses. The results obtained

with the two very different actions (staggered fermions on the left and Wilson fermions on the right

panel) are in good agreement and the overall uncertainties are very small.

the potential requires a delicate study of the asymptotic time behavior of Wilson loops and

the calculation of r0 or r1 from the potential is a much more complicated analysis (see [3]

for a recent example) than, say, fitting the mass of a particle, such as the pion, from a

measured correlator. The introduction of HYP smearing [4] on the gauge links has reduced

the problem of the poor signal-to-noise ratio of Wilson loops, but the calculation of r0 or r1

remains non-trivial. These subtleties might be at least partially responsible for the tension

within present determinations of the Sommer scale between [5] and [6, 7], and for a similar

tension between recent and present determinations [7, 8]. While these differences are only

on the two standard deviation level they have an important impact on the search for new

physics in the leptonic decays of the Ds meson, as discussed in [9].

In this paper we propose an alternative to the r0 scale: the w0 scale. The method is

based on the Wilson flow. The Wilson flow was considered in the context of trivializing

maps by Luscher [10]. It was studied earlier by Narayanan and Neuberger [11] in a dif-

ferent context, too. Its important renormalization properties were clarified in [12, 13]. Its

application to scale setting, which we build upon, was suggested recently in [12].

The w0 scale keeps the advantages of the Sommer scale (i.e. no expensive fermion

inversion is needed). However, it is easier to determine with high precision, since it requires

neither a fitting of the asymptotic time behavior of correlation functions nor fighting signal-

to-noise issues.

Before discussing the method in detail (see section 2), we present our results for the

w0 scale in physical units. These values can henceforth be used to determine the lattice

spacing in physical units in Nf = 2+1 lattice QCD calculations. (The dependence of w0 on

Nf should be studied before it is used to set the scale in simulations with Nf 6= 2 + 1.) We

performed two independent calculations of w0, both based on simulations with pion masses

all the way down to its physical value and below. The first uses our 2HEX smeared Wilson

fermion ensembles [14–16] and the second, 2-stout smeared staggered simulations [17–23].

In both cases w0 is interpolated to the physical quark masses as well as extrapolated into
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the continuum. The Ω mass is used to convert these scales to physical units (with our

smeared actions hadron mass ratios show very small cutoff effects [24, 25]). Representative

continuum limits (see below) are displayed in figure 1, where the staggered and Wilson

results are shown on the l.h.s. and r.h.s., respectively. The plot indicates that w0 has cutoff

effects similar to MΩ, resulting in a very mild continuum scaling, and that the uncertainties

on the extrapolated value are very small. Moreover, the staggered and Wilson results are in

good agreement and the precisions reached with the two actions are on the same level. We

quote the Wilson result, which does not rely on the “rooting” of the fermion determinant,

as our final result:

w0 = 0.1755(18)(04) fm , (1.1)

where the first error is statistical and the second is systematic. Note that the overall

uncertainty is 1%, most of which is statistical. Furthemore, the statistical error in the

dimensionless quantity w0MΩ comes dominantly from aMΩ. Thus, the error on w0/a

itself is subdominant, typically on the level of a few per mil or less. This fact makes

w0/a a particularly attractive candidate to set the relative scale between simulations for

continuum extrapolations and for comparing calculations from different groups. Another

interesting application is the determination of the ratio of the lattice spacings for anisotropic

actions [26]. As a side product we also compute a related quantity (t0)1/2 suggested in [12]

(though on the same set of configurations its relative systematic error is four times larger

than that of w0).

This paper is organized as follows. After this introductory section we discuss the scale

setting method based on the Wilson (and Symanzik) flow in section 2. The next two

sections (3), (4) deal with our results obtained with Wilson and with staggered fermions,

respectively. Section 5 discusses two possible problems, namely finite volume effects and

autocorrelations for the flow. Section 6 presents the final results and concludes. In order

to make the practical application of the scale setting procedure presented here easier, the

method is implemented in the CHROMA software system [27]. In addition, along with this

paper we submit two codes to the arXiv, both written in C, as ancillary files. The first

(wilson flow.c) determines the Wilson (and Symanzik) flow. It was written emphasizing

readability over speed. It works both for isotropic and anisotropic [26] lattice actions.

The second one (w0 scale.c) uses the output of wilson flow.c or that of CHROMA to

determine the scale w0/a and its statistical uncertainty.

2 The scales (t0)
1/2 and w0

The scale setting method can be summarized as follows. Following the strategy of ref. [12]

we calculate the Wilson flow, that is we integrate infinitesimal gauge-field smearing steps

up to a scale t, whose units are inverse mass-squared. The smearing is performed until a

well-chosen dimensionless observable reaches a specified value. The universal “flow time,”

t = t0, at which this happens can then be used to set the scale on the original lattices.

Integrating the infinitesimal smearing steps is equivalent to finding the solution to the

flow equation [11, 12]:

V̇t = Z(Vt)Vt, V0 = U (2.1)
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Figure 2. Analogously to the Wilson flow in figure 2 of [12] here we show the Symanzik flow, which

can be used to define the w0 scale and the t
1/2
0 scale proposed by [12]. These flows are obtained

using our Nf=2+1 Wilson fermion simulations. For our four lattice spacings we have runs close to

Mπ≈300 MeV (the individual pion masses are somewhat different). The perturbative expectation

is shown by the gray band. Its width indicates the uncertainty in ΛQCD using two representative

values from the literature (c.f. refs. [28, 29]).

where Vt are the gauge links at flow time t and U are the original gauge links. In [12,

13], where the Wilson action is used, Z(Vt) is the derivative of the plaquette action and

the corresponding flow is called the Wilson flow. As it can be seen from eq. (2.1) an

infinitesimal change of the link variable is obtained by the product of the link variable

itself and the sum of the staples around it. Thus, for the present case the flow is generated

by infinitesimal stout-smearing steps. As a consequence the action decreases and the gauge

field is getting smoother. For improved gauge actions, one can take Z(Vt) to be the algebra-

valued derivative of the gauge action.

To obtain the scale t0, it is suggested in [12] to integrate the flow and to compute

t2〈E(t)〉 as a function of t, t0 being the flow time where t2〈E(t)〉 reaches 0.3. Here 〈E(t)〉 is

the expectation value of the continuum-like action density Gaµν(t)Gaµν(t)/4, where Gaµν(t) is

a lattice version of the chromoelectric field-strength tensor at flow time t. Here we use the

usual clover-leaf definition for this tensor. Note that t2〈E〉 turned out to be approximately

proportional to t for large flow times, a similar observation was made for the pure gauge

theory in ref. [12].

Here we propose to use another, related observable, namely

W (t) ≡ t d
dt

{
t2〈E(t)〉

}
(2.2)

and define the w0 scale, via the condition

W (t)|t=w2
0

= 0.3 . (2.3)

The most important reasons for this choice can be summarized as follows. While

t2〈E(t)〉 incorporates information about the gauge configurations from all scales larger
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simulation data. An illustration of the different cutoff effects is also shown. We determined t
1/2
0 and

w0 with Wilson fermions using two different flow equations (Wilson and Symanzik flow). The results

based on the different flow equations show different discretization effects. For the two very different

actions the final results are in good agreement and the overall uncertainties on the continuum values

are very small.
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Figure 4. Ratio of the w0 scales obtained by Symanzik and Wilson flows for physical pion and

kaon masses.

than O(1/
√
t) (thus including scales also around the cutoff), W (t) mostly depends on scales

around O(1/
√
t). This is an advantage, because the behavior of the flow at small t ∼ a2 is

subject to discretization effects. Let us illustrate these cutoff effects by one example. The

flow t2〈E(t)〉 starts vertically at the origin in the continuum, while it must start horizontally

for any lattice spacing and for any lattice action. The value of t2〈E(t)〉 at t is influenced

by this cutoff effect appearing at small t, whereas the derivative W (t) is less affected. In

the original approach, the flow times t corresponding to different values of t2〈E(t)〉 yield

different relative scales. Contrary to that, W (t) yields very similar scales when different

values are considered on the r.h.s. of (2.2). Furthermore, the perturbative calculation of [12]

provides strong evidence that t0, and also w0, does not require renormalization.

Of course one is free to modify the lattice observable used or the flow equation (2.1)

by terms which vanish in the continuum limit. For instance, as section 3 of [12] discusses,
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Figure 5. Final histogram for the different analyses used to compute w0 with our Wilson fermion

simulations. Each entry is weighted by its corresponding fit quality. The orange (thinner) band

denotes the systematic and the gray (thicker) one the combined (systematic and statistical) un-

certainties. The vertical line depicts the central value. Due to the small width of the distribution

(note the scale), our final result (1.1) is very precise.

〈E(t)〉 can be obtained directly from the sum of the plaquettes or from the more symmetric

clover definiton of Gaµν(t). Both definitions are acceptable and lead to results which must

converge to the same continuum limit. One can look at the pure SU(3) gauge theory with

no quarks and study the flow in units of r0. The symmetric definition turns out to be

advantageous [12], since it results in negligible cutoff effects, whereas the non-symmetric

definition leads to approximately 5% cutoff effects at a lattice spacing of 0.1 fm [12]. The

choice of Z(Vt) in (2.1) is also only fixed up to discretization corrections. The natural choice

is to consider the algebra-valued derivative of the gauge action used in the simulation (c.f.

section 6 of [10]). In our case this is a tree-level Symanzik improved action [30] and we

call the corresponding flow, the Symanzik flow (c.f. figure 2). However, the use of the

Wilson flow is also correct and should give the same continuum limit. This is illustrated in

figure 3, with 2HEX Wilson fermions. As can be seen, t
1/2
0 obtained by the Wilson flow has

larger cutoff effects than the one coming from the Symanzik flow. For w0, both choices are

good and cutoff effects are around or less than two percent, in the range of lattice spacings

considered. This is confirmed by looking at the ratio of the w0 scales obtained from the

Symanzik and the Wilson flows as a function of lattice spacing. Figure 4 shows that the

ratio appoaches 1 in the continuum limit, as it should. Here the pion and kaon masses are

tuned to their physical values (this tuning leads to systematic uncertainties included on the

points and discussed below). For our staggered action both t
1/2
0 and w0 can be obtained

with small cutoff effects using the Wilson flow. Note that in our case it is consistent to use

one action for generating the fields and another one in the gauge flow. The two actions

differ only in higher order in the lattice spacing, thus the derivative of the action with

respect to the link variable will have the same order cutoff effect. Since in our setup the

fermionic sector has already a2 cutoff effects — at least — using the Wilson flow instead

of the Symanzik flow does not deteriorate the continuum extrapolation. Obviously, one

should use the same definition for different lattice spacings, if a continuum extrapolation

is carried out.
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In fact the w0 scale determined with the Wilson flow has tiny cutoff effects for both

our Wilson and staggered actions. Since integrating the Wilson flow is several times faster

than working with the Symanzik flow, the former provides a quick and straightforward

determination of the lattice spacing through the w0 scale.

On a practical level, the flow equation (2.1) can be efficiently integrated by using the

explicit fourth-order Runge-Kutta scheme proposed in [12]. The links at flow time t + ε

are obtained from those at flow time t via

X0 = Vt,

X1 = exp

(
1

4
Z0

)
X0,

X2 = exp

(
8

9
Z1 −

17

36
Z0

)
X1,

Vt+ε = exp

(
3

4
Z2 −

8

9
Z1 +

17

36
Z0

)
X2, (2.4)

where Zi ≡ εZ(Xi). It turns out that the step size ε can be chosen rather coarse, since the

total integration error associated with the finite step size scales like ε3 [12]. Indeed we find

that a value of ε = 0.01 yields finite-step-size errors far below the per-mil level, which is

negligible for our purposes. These findings are in agreement with those of [12].

3 Nf = 2 + 1 Wilson fermion computation

We compute the w0 scale (and also the t
1/2
0 scale) using our 2HEX smeared [31] Wilson

fermion ensembles [14–16], dropping the coarsest lattice with β = 3.31, as it appears to be

less suited for studying various options for flows and/or scale setting procedures. Note that

we are still left with four lattice spacings, which provide a safe continuum extrapolation,

and pion masses down to, or even below, the physical value.

As discussed above, the Symanzik or the Wilson flows are equally valid for determining

scale observables. Our continuum results for these observables agree within systematic

errors. In order to reduce the uncertainties coming from the continuum extrapolation,

one should favor the flow which has small cutoff effects. As we illustrated in figure 3 the

continuum extrapolation of the w0 scale with the Symanzik and the Wilson flows are almost

equally good (the Wilson flow is slightly better). For the t
1/2
0 scale the Symanzik flow gives

smaller cutoff effects than the Wilson flow, resulting in a factor of two smaller systematic

error. Thus, for our results (c.f. figure 3) we used the flows with the smaller cutoff effects.

Even with this favourable choice the relative systematic error of the t
1/2
0 scale is still about

four times larger than that of the w0 scale. This huge difference in accuracy justifies our

preference for the w0 scale (for the w0 scale Symanzik or Wilson flows are similarly good).

Moreover, since integrating the Wilson flow is several times faster than integrating the

Symanzik flow, the best way to set the scale is to use w0 determined from the Wilson flow.

As discussed above, we use the Ω baryon mass to express w0 in physical units. Thus,

the scale is extracted from aMΩ at the point where the ratios (Mπ/MΩ,MK/MΩ) acquire

their physical values, as described in [14]. We then compute w0(Mπ,MK , a) in physical

– 7 –
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Source Relative error [%]

Physical point interpolation 15

Mπ-cut 40

Continuum limit 55

Spectrum 55

Scale 45

Table 1. Contributions to the systematic uncertainty on w0, as fractions of the total systematic

error in % (rounded to the closest 5%). The various uncertainties are explained in the main text

and they are listed in the same order here. Note that the fractions must be added in quadrature

and do not sum up exactly to 100% due to correlations and rounding.

units for each ensemble and perform a combined quark-mass interpolation and continuum

extrapolation to obtain the physical value of w0.

Four different fit functions are used to interpolate to the physical mass point in the

Mπ-MK plane. They have the form w0=a0+a1M
2
π+a2M

2
K+d(a)+hoc., where hoc. stands

for higher order contributions in M2
π and/or M2

K . Because our fermion action is tree-level

improved, the discretization corrections, d(a), are chosen to be either proportional to αsa

or a2 (since the continuum extrapolation of w0/MΩ is practically constant, essentially no

difference is observed between these two choices).

The various strategies that we apply for the mass extractions, to interpolate to the

physical point and to extrapolate to the continuum limit are all combined to estimate the

systematic uncertainties. To that end we use 64 different analyses, i.e. the 4 different fit

forms in the Mπ-MK plane, 2 pion mass cuts for these fits (Mπ < 300 MeV, 350 MeV),

2 different scaling assumptions in the lattice spacings, 2 fit ranges for extracting MK ,

Mπ and MΩ as well as 2 methods for setting the scale (corresponding to different pion

mass cuts in the MΩ-fits, i.e. Mπ < 380 MeV, 480 MeV). Each of these analyses can be

fully justified and can be considered “the” final analysis. Thus, according to our standard

procedure [14, 16, 25, 32], we construct a histogram out of the values obtained for w0,

where each one is weighted by the corresponding fit quality. We compute the median and

the central 68% confidence interval of the resulting distribution and take these values to be

our central value and systematic error, respectively (c.f. figure 5). A detailed error budget

is given in table 1. The same set of analyses has been repeated for the observable based

on the Symanzik flow. We found an agreement within error (see figure 3).

The statistical error is computed by repeating the analysis on 2000 bootstrap samples.

Note that the statistical error is much larger than the systematic. The statistical error of

w0/a is much smaller than that of aMΩ. Therefore, the error of our w0 in physical units is

dominated by the statistical uncertainties in aMΩ. In that way, we obtain the result with

its systematic and statistical errors given in eq. (1.1).

4 Nf = 2 + 1 staggered fermion computation

An interesting test is a comparison of continuum results obtained with Wilson and staggered

fermions. Therefore, we perform a fully independent determination of w0. We consider the

– 8 –
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β, scale ams ms/mu

3.7500 0.050254 28,14,10

a−1 = 1.605(6)(3) GeV 0.048 27.9,20,10

0.040 10

3.7920 0.05 20

a−1 = 1.778(7)(1) GeV 0.045 28,20,14,10

0.040 20,10

3.8500 0.0395 27.3,20,14,10

a−1 = 2.024(18)(7) GeV 0.0388 20,14,10

0.037 10

3.9900 0.0283 28.15,10,6

a−1 = 2.684(58)(7) GeV 0.0277 14,10,6

Table 2. Staggered ensembles used in this analysis.

2-step stout-smeared staggered fermion action [33] used in our thermodynamics studies [17–

21, 34]. The parameters of the ensembles used here are summarized in table 2. Note

that the pion masses either straddle the physical value (obtained from Mπ/MΩ) or even

touch it within errors. We express all quantities as functions of the bare masses for fixed

gauge coupling. The w0 scale in lattice units, w0/a(amud, ams), is then computed for each

simulation point as described before. These results are then interpolated to the physical

point. This interpolation is done for every lattice spacing separately. Again, we use four

functional forms as in the Wilson case. Since there is no additive mass renormalization

for staggered fermions and the bare quark masses are known exactly, in the interpolating

fits we use these masses. Thus, instead of M2
π we use 2mud and instead of M2

K we use

mud+ms in the fit functions. For both the kaon and pion mass, we use three polynomial fit

formulae to describe their quark mass dependence. Finally, we perform a linear continuum

extrapolation in a2. In order to estimate the cutoff effects we use the four or the three

finest lattice spacings. We end up with 72 different continuum values for w0, where each

one can be weighted by the combined goodness of fit. Note that we have a much larger

statistics for our staggered action than for the Wilson one.

On a subset of the ensembles used here we have already carried out a scaling study for

r0 in ref. [19]. We found that for the same action and lattice spacing range one observes

about 10% cutoff effect for r0 (see the right panel of figure 4 in ref. [19], where the scale

was set by fK). We also gave a scaling plot for MΩ in the same paper.

5 Finite volume effects and autocorrelations

At fixed physical volume, finite-volume effects on the Wilson or Symanzik flow increase as

the flow time increases. It is, therefore, important to check that these effects remain small

for our choice of w0 scale. Figure 6 displays the volume dependence of w0/a on the second

finest staggered lattice at physical quark masses. (For this test we used a couple of thousand

trajectories for each volume.) It shows that finite-volume effects only become relevant for
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Figure 6. Finite-volume effects in the w0 scale. Here we plot the measured values of w0/a as a

function of L, obtained with fixed bare quark masses corresponding to the physical point. Notice

that it is perfectly feasible to determine w0/a to per-mil precision on the 164 configurations we have

on our 483× 64 lattice. Even for boxes of size slightly below 2 fm, deviations from the large-volume

value never exceed 1%.

box sizes . 2 fm. For lattices larger than that, finite volume effects are essentially absent.

Note that for a lattice of 2 fm one has MπL=1.35, which is far smaller than the spatial size

suggested by the rule of thumb MπL>∼4. These tiny finite volume effects and the smallness

of the error on w0/a make the w0 scale a very attractive intermediate quantity to determine

the lattice spacing.

Since the Wilson/Symanzik flow incorporates more and more information from the

whole lattice as t increases, it is important to study autocorrelations. Thus, we com-

pute the integrated autocorrelation time of the flow as a function of t, using the standard

methodology described in [35]. We do so by looking at several long (5000 trajectories) par-

allel HMC streams on our finest staggered lattices or simply analyzing a long HMC stream

on one of our finest Wilson ensembles [14]. We find that for lattice spacings down to about

a = 0.54 fm, the integrated autocorrelation time of E(t = w2
0) is around or below 50 unit-

length trajectories. These autocorrelations are taken into account by appropriate binning.

6 Results and conclusions

We presented a new quantity for setting the scale in lattice QCD calculations. Precise

determinations of this new w0 scale were obtained using Wilson and staggered fermion

simulations with lattice speacings down to 0.054 fm and average up and down quark masses

all the way down to, and even below, its physical value. Therefore, we showed that the w0

scale can be used to reliably determine the lattice spacing in physical units in upcoming

lattice calculations. Moreover, the good agreement between the Wilson and staggered

determinations illustrates the robustness of this scale-setting method (c.f. figure 1).

In eq. (2.2) we define the w0 scale as the square root of the “time” at which the

logarithmic derivative of t2〈E(t)〉 reaches 0.3. A larger value, say 0.5, increases the cost of

integrating the flow, as well as the size of statistical and finite-volume errors. A smaller
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Figure 7. The value of the w0 scale at various pion and kaon masses in the continuum limit.

The results are based on our Wilson simulations. The black dot represents the physical point. To

use the figures one should compute aMπ, aMK and w0/a. Then one reads off the value of w0 in

physical units corresponding to the combinations w2
0M

2
π and w2

0(M2
K −M2

π/2). The black curve in

the middle corresponds to the physical M2
K−M2

π/2 (used to fix ms), whereas the lines below/above

correspond to a 10% smaller/larger value of this quantity. As it can be seen the change in w0 is

small. Changing the pion mass from its physical value to a three times larger value (thus, almost

an order of magnitude larger quark mass) results in about 5% change in w0. Changing the strange

quark mass by 10% means changing w0 on the 0.5% level. The mass independent scale setting

prescription is used here.

value would probe short-distance physics which is more strongly affected by discretization

errors. For values below 0.1, this becomes a serious concern for coarser lattices. The value

0.3 is chosen to be safely away from these two extremes and is optimal for modern day

simulations, performed with lattice spacings in the range 0.05 fm<∼a<∼0.1 fm and lattice

sizes larger than 2 fm.

The continuum extrapolated value of w0 for the physical point is given in eq. (1.1):

w0 = 0.1755(18)(04) fm.

For non-physical pion and/or kaon masses the pion and kaon mass dependence of

w0 is displayed in figure 7. This figure allows to determine the lattice spacing and its

uncertainty as follows. One measures Mπa, MKa and w0/a. Using these three quantities

one then determines the dimensionless combinations x = w2
0M

2
π and y = w2

0(M2
K −M2

π/2).

These two quantities define a point in figure 7. Reading off the value of w0 in physical units

and combining it with the computed value of w0/a gives the lattice spacing in fm. For pion

and kaon masses covered by this figure the uncertainty of the w0 scale is essentially mass

independent and its value is 1% (fully dominated by the statistical error of MΩ). The same
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result for w0 and the lattice spacing can be obtained by using the following formula:

w0 = 0.18515−0.5885x2−0.0497y−0.11xy−1.476x3±18 · 10−3(stat)± 4 · 10−3(sys) (6.1)

which is valid for 0.01<∼x<∼ 0.1 and 0.165<∼ y <∼ 0.205.

In this paper we have shown that the w0 scale has several advantages over other scale

setting procedures (most of which are also shared by t0, though the latter is more sensitive

to cut-off effects). The most important are:

• w0 is cheap and easy to implement and compute (note that our reference implemen-

tations are publicly available); in particular:

– w0 does not require the computation of quark propagators;

– w0 does not involve the delicate fitting of correlation functions at asymp-

totic times.

• the determination of w0 is not only cheap but it can be done precisely and reliably;

typically one obtains results with an accuracy on the few per mil level;

• the value of w0 in physical units is known for physical and non-physical quark masses

(for mass independent scale setting);

• our results suggest that w0 depends weakly on quark masses; in particular, unlike

scale setting with MΩ, even a 10% deviation in ms from its physical value only

translates into a <∼0.5% change in the w0 scale;

• in the present investigation the most precise and fastest method to determine the

scale was w0 based on the Wilson flow: independently of the type of the flow w0 has

quite small cutoff effects and consequently small systematic uncertainties, whereas

integrating the Wilson flow is the fastest among all flow choices.
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