000023242 001__ 23242
000023242 005__ 20240625095032.0
000023242 0247_ $$2pmid$$apmid:23064498
000023242 0247_ $$2DOI$$a10.1038/NMAT3456
000023242 0247_ $$2WOS$$aWOS:000310434600019
000023242 0247_ $$2altmetric$$aaltmetric:4953291
000023242 0247_ $$2Handle$$a2128/22941
000023242 037__ $$aPreJuSER-23242
000023242 041__ $$aeng
000023242 082__ $$a610
000023242 1001_ $$0P:(DE-HGF)0$$aZhang, W.$$b0
000023242 245__ $$aRole of vacancies in metal-insulator transitions of crystalline phase-change materials
000023242 260__ $$aBasingstoke$$bNature Publishing Group$$c2012
000023242 300__ $$a952 - 956
000023242 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000023242 3367_ $$2DataCite$$aOutput Types/Journal article
000023242 3367_ $$00$$2EndNote$$aJournal Article
000023242 3367_ $$2BibTeX$$aARTICLE
000023242 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000023242 3367_ $$2DRIVER$$aarticle
000023242 440_0 $$011903$$aNature Materials$$v11$$x1476-1122
000023242 500__ $$3POF3_Assignment on 2016-02-29
000023242 500__ $$aRecord converted from VDB: 12.11.2012
000023242 520__ $$aThe study of metal-insulator transitions (MITs) in crystalline solids is a subject of paramount importance, both from the fundamental point of view and for its relevance to the transport properties of materials. Recently, a MIT governed by disorder was observed in crystalline phase-change materials. Here we report on calculations employing density functional theory, which identify the microscopic mechanism that localizes the wavefunctions and is driving this transition. We show that, in the insulating phase, the electronic states responsible for charge transport are localized inside regions having large vacancy concentrations. The transition to the metallic state is driven by the dissolution of these vacancy clusters and the formation of ordered vacancy layers. These results provide important insights on controlling the wavefunction localization, which should help to develop conceptually new devices based on multiple resistance states.
000023242 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000023242 536__ $$0G:(DE-Juel1)jiff02_20090701$$aQuantensimulation f\u00fcr realistische Grenzfl\u00e4chen in Nanosystemen (jiff02_20090701)$$cjiff02_20090701$$fQuantensimulation f\u00fcr realistische Grenzfl\u00e4chen in Nanosystemen$$x1
000023242 588__ $$aDataset connected to Pubmed
000023242 7001_ $$0P:(DE-Juel1)VDB78175$$aThiess, A.$$b1$$uFZJ
000023242 7001_ $$0P:(DE-HGF)0$$aZalden, P.$$b2
000023242 7001_ $$0P:(DE-Juel1)131057$$aZeller, R.$$b3$$uFZJ
000023242 7001_ $$0P:(DE-Juel1)130612$$aDederichs, P.H.$$b4$$uFZJ
000023242 7001_ $$0P:(DE-HGF)0$$aRaty, J-Y.$$b5
000023242 7001_ $$0P:(DE-HGF)0$$aWuttig, M.$$b6
000023242 7001_ $$0P:(DE-Juel1)130548$$aBlügel, S.$$b7$$uFZJ
000023242 7001_ $$0P:(DE-HGF)0$$aMazzarello, R.$$b8
000023242 773__ $$0PERI:(DE-600)2088679-2$$a10.1038/nmat3456$$gVol. 11, p. 952 - 956$$p952 - 956$$q11<952 - 956$$tNature materials$$v11$$x1476-1122$$y2012
000023242 8567_ $$uhttp://dx.doi.org/10.1038/NMAT3456
000023242 8564_ $$uhttps://juser.fz-juelich.de/record/23242/files/paper_revised.pdf$$yOpenAccess
000023242 8564_ $$uhttps://juser.fz-juelich.de/record/23242/files/paper_revised.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000023242 909CO $$ooai:juser.fz-juelich.de:23242$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000023242 9141_ $$y2012
000023242 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000023242 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000023242 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000023242 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000023242 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000023242 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000023242 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000023242 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000023242 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000023242 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000023242 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000023242 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000023242 9131_ $$0G:(DE-Juel1)FUEK412$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000023242 9131_ $$0G:(DE-Juel1)jiff02_20090701$$aDE-HGF$$vQuantensimulation f\u00fcr realistische Grenzfl\u00e4chen in Nanosystemen$$x1
000023242 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x0
000023242 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$gPGI$$kPGI-2$$lTheoretische Nanoelektronik$$x0
000023242 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$gIAS$$kIAS-1$$lQuanten-Theorie der Materialien$$x1$$zIFF-1
000023242 9201_ $$0I:(DE-Juel1)IAS-3-20090406$$gIAS$$kIAS-3$$lTheoretische Nanoelektronik$$x2$$zIFF-3
000023242 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$gPGI$$kPGI-1$$lQuanten-Theorie der Materialien$$x3
000023242 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x4
000023242 970__ $$aVDB:(DE-Juel1)140234
000023242 980__ $$aVDB
000023242 980__ $$aConvertedRecord
000023242 980__ $$ajournal
000023242 980__ $$aI:(DE-Juel1)PGI-2-20110106
000023242 980__ $$aI:(DE-Juel1)IAS-1-20090406
000023242 980__ $$aI:(DE-Juel1)IAS-3-20090406
000023242 980__ $$aI:(DE-Juel1)PGI-1-20110106
000023242 980__ $$aUNRESTRICTED
000023242 980__ $$aI:(DE-82)080012_20140620
000023242 9801_ $$aFullTexts
000023242 981__ $$aI:(DE-Juel1)IAS-1-20090406
000023242 981__ $$aI:(DE-Juel1)IAS-3-20090406
000023242 981__ $$aI:(DE-Juel1)PGI-1-20110106