001     23242
005     20240625095032.0
024 7 _ |a pmid:23064498
|2 pmid
024 7 _ |a 10.1038/NMAT3456
|2 DOI
024 7 _ |a WOS:000310434600019
|2 WOS
024 7 _ |a altmetric:4953291
|2 altmetric
024 7 _ |a 2128/22941
|2 Handle
037 _ _ |a PreJuSER-23242
041 _ _ |a eng
082 _ _ |a 610
100 1 _ |0 P:(DE-HGF)0
|a Zhang, W.
|b 0
245 _ _ |a Role of vacancies in metal-insulator transitions of crystalline phase-change materials
260 _ _ |a Basingstoke
|b Nature Publishing Group
|c 2012
300 _ _ |a 952 - 956
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
440 _ 0 |0 11903
|a Nature Materials
|v 11
|x 1476-1122
500 _ _ |3 POF3_Assignment on 2016-02-29
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a The study of metal-insulator transitions (MITs) in crystalline solids is a subject of paramount importance, both from the fundamental point of view and for its relevance to the transport properties of materials. Recently, a MIT governed by disorder was observed in crystalline phase-change materials. Here we report on calculations employing density functional theory, which identify the microscopic mechanism that localizes the wavefunctions and is driving this transition. We show that, in the insulating phase, the electronic states responsible for charge transport are localized inside regions having large vacancy concentrations. The transition to the metallic state is driven by the dissolution of these vacancy clusters and the formation of ordered vacancy layers. These results provide important insights on controlling the wavefunction localization, which should help to develop conceptually new devices based on multiple resistance states.
536 _ _ |0 G:(DE-Juel1)FUEK412
|2 G:(DE-HGF)
|a Grundlagen für zukünftige Informationstechnologien
|c P42
|x 0
536 _ _ |0 G:(DE-Juel1)jiff02_20090701
|a Quantensimulation f\u00fcr realistische Grenzfl\u00e4chen in Nanosystemen (jiff02_20090701)
|c jiff02_20090701
|f Quantensimulation f\u00fcr realistische Grenzfl\u00e4chen in Nanosystemen
|x 1
588 _ _ |a Dataset connected to Pubmed
700 1 _ |0 P:(DE-Juel1)VDB78175
|a Thiess, A.
|b 1
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Zalden, P.
|b 2
700 1 _ |0 P:(DE-Juel1)131057
|a Zeller, R.
|b 3
|u FZJ
700 1 _ |0 P:(DE-Juel1)130612
|a Dederichs, P.H.
|b 4
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Raty, J-Y.
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Wuttig, M.
|b 6
700 1 _ |0 P:(DE-Juel1)130548
|a Blügel, S.
|b 7
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Mazzarello, R.
|b 8
773 _ _ |0 PERI:(DE-600)2088679-2
|a 10.1038/nmat3456
|g Vol. 11, p. 952 - 956
|p 952 - 956
|q 11<952 - 956
|t Nature materials
|v 11
|x 1476-1122
|y 2012
856 7 _ |u http://dx.doi.org/10.1038/NMAT3456
856 4 _ |u https://juser.fz-juelich.de/record/23242/files/paper_revised.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/23242/files/paper_revised.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:23242
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
913 1 _ |0 G:(DE-Juel1)FUEK412
|1 G:(DE-HGF)POF2-420
|2 G:(DE-HGF)POF2-400
|b Schlüsseltechnologien
|k P42
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|v Grundlagen für zukünftige Informationstechnologien
|x 0
913 1 _ |0 G:(DE-Juel1)jiff02_20090701
|a DE-HGF
|v Quantensimulation f\u00fcr realistische Grenzfl\u00e4chen in Nanosystemen
|x 1
913 2 _ |0 G:(DE-HGF)POF3-529H
|1 G:(DE-HGF)POF3-520
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|v Addenda
|x 0
914 1 _ |y 2012
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)PGI-2-20110106
|g PGI
|k PGI-2
|l Theoretische Nanoelektronik
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|g IAS
|k IAS-1
|l Quanten-Theorie der Materialien
|x 1
|z IFF-1
920 1 _ |0 I:(DE-Juel1)IAS-3-20090406
|g IAS
|k IAS-3
|l Theoretische Nanoelektronik
|x 2
|z IFF-3
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|g PGI
|k PGI-1
|l Quanten-Theorie der Materialien
|x 3
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 4
970 _ _ |a VDB:(DE-Juel1)140234
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-2-20110106
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)IAS-3-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-82)080012_20140620
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)IAS-1-20090406
981 _ _ |a I:(DE-Juel1)IAS-3-20090406
981 _ _ |a I:(DE-Juel1)PGI-1-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21