000002327 001__ 2327
000002327 005__ 20230426083005.0
000002327 0247_ $$2DOI$$a10.1103/PhysRevB.78.165123
000002327 0247_ $$2WOS$$aWOS:000260574500044
000002327 0247_ $$2Handle$$a2128/11075
000002327 037__ $$aPreJuSER-2327
000002327 041__ $$aeng
000002327 082__ $$a530
000002327 084__ $$2WoS$$aPhysics, Condensed Matter
000002327 1001_ $$0P:(DE-Juel1)VDB941$$aLiebsch, A.$$b0$$uFZJ
000002327 245__ $$aMultisite versus multiorbital Coulomb correlations studied within finite-temperature exact diagonalization dynamical mean-field theory
000002327 260__ $$aCollege Park, Md.$$bAPS$$c2008
000002327 300__ $$a
000002327 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000002327 3367_ $$2DataCite$$aOutput Types/Journal article
000002327 3367_ $$00$$2EndNote$$aJournal Article
000002327 3367_ $$2BibTeX$$aARTICLE
000002327 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000002327 3367_ $$2DRIVER$$aarticle
000002327 440_0 $$04919$$aPhysical Review B$$v78$$x1098-0121$$y16
000002327 500__ $$aRecord converted from VDB: 12.11.2012
000002327 520__ $$aThe influence of short-range Coulomb correlations on the Mott transition in the single-band Hubbard model at half filling is studied within cellular dynamical mean-field theory for square and triangular lattices. Finite-temperature exact diagonalization is used to investigate correlations within two-, three-, and four-site clusters. Transforming the nonlocal self-energy from a site basis to a molecular-orbital basis, we focus on the interorbital charge transfer between these cluster molecular orbitals in the vicinity of the Mott transition. In all cases studied, the charge transfer is found to be small, indicating weak Coulomb-induced orbital polarization despite sizable level splitting between orbitals. These results demonstrate that all cluster molecular orbitals take part in the Mott transition and that the insulating gap opens simultaneously across the entire Fermi surface. Thus, at half filling we do not find orbital-selective Mott transitions or a combination of band filling and Mott transition in different orbitals. Nevertheless, the approach toward the transition differs greatly between cluster orbitals, giving rise to a pronounced momentum variation along the Fermi surface, in agreement with previous works. The near absence of Coulomb-induced orbital polarization in these clusters differs qualitatively from single-site multiorbital studies of several transition-metal oxides, where the Mott phase exhibits nearly complete orbital polarization as a result of a correlation driven enhancement of the crystal-field splitting. The strong single-particle coupling among cluster orbitals in the single-band case is identified as the source of this difference.
000002327 536__ $$0G:(DE-Juel1)FUEK414$$2G:(DE-HGF)$$aKondensierte Materie$$cP54$$x0
000002327 542__ $$2Crossref$$i2008-10-28$$uhttp://link.aps.org/licenses/aps-default-license
000002327 588__ $$aDataset connected to Web of Science
000002327 650_7 $$2WoSType$$aJ
000002327 7001_ $$0P:(DE-HGF)0$$aIshida, H.$$b1
000002327 7001_ $$0P:(DE-HGF)0$$aMerino, J.$$b2
000002327 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.78.165123$$bAmerican Physical Society (APS)$$d2008-10-28$$n16$$p165123$$tPhysical Review B$$v78$$x1098-0121$$y2008
000002327 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.78.165123$$gVol. 78$$n16$$p165123$$q78$$tPhysical review / B$$v78$$x1098-0121$$y2008
000002327 8567_ $$uhttp://dx.doi.org/10.1103/PhysRevB.78.165123
000002327 8564_ $$uhttps://juser.fz-juelich.de/record/2327/files/PhysRevB.78.165123.pdf$$yOpenAccess
000002327 8564_ $$uhttps://juser.fz-juelich.de/record/2327/files/PhysRevB.78.165123.gif?subformat=icon$$xicon$$yOpenAccess
000002327 8564_ $$uhttps://juser.fz-juelich.de/record/2327/files/PhysRevB.78.165123.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000002327 8564_ $$uhttps://juser.fz-juelich.de/record/2327/files/PhysRevB.78.165123.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000002327 8564_ $$uhttps://juser.fz-juelich.de/record/2327/files/PhysRevB.78.165123.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000002327 909CO $$ooai:juser.fz-juelich.de:2327$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000002327 9131_ $$0G:(DE-Juel1)FUEK414$$bMaterie$$kP54$$lKondensierte Materie$$vKondensierte Materie$$x0$$zentfällt   bis 2009
000002327 9141_ $$y2008
000002327 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000002327 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000002327 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000002327 9201_ $$0I:(DE-Juel1)VDB781$$d31.12.2010$$gIFF$$kIFF-1$$lQuanten-Theorie der Materialien$$x0
000002327 970__ $$aVDB:(DE-Juel1)105055
000002327 980__ $$aVDB
000002327 980__ $$aConvertedRecord
000002327 980__ $$ajournal
000002327 980__ $$aI:(DE-Juel1)PGI-1-20110106
000002327 980__ $$aUNRESTRICTED
000002327 9801_ $$aFullTexts
000002327 981__ $$aI:(DE-Juel1)PGI-1-20110106
000002327 999C5 $$1K. Held$$2Crossref$$9-- missing cx lookup --$$a10.1080/00018730701619647$$p829 -$$tAdv. Phys.$$v56$$y2007
000002327 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.78.865
000002327 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.68.13
000002327 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.92.176403
000002327 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.77.115115
000002327 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.70.205116
000002327 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.76.085127
000002327 999C5 $$1V. I. Anisimov$$2Crossref$$oV. I. Anisimov 2002$$y2002
000002327 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.98.216403
000002327 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.94.166402
000002327 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.99.126402
000002327 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.77.115350
000002327 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.92.216402
000002327 999C5 $$1A. Koga$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physb.2005.01.414$$p1366 -$$tPhysica B$$v359-361$$y2005
000002327 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.70.165103
000002327 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.95.116402
000002327 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.72.085114
000002327 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1143/JPSJ.74.2393
000002327 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.99.236404
000002327 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.49.3596
000002327 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.75.1344
000002327 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.51.12045
000002327 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.58.R7475
000002327 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.84.522
000002327 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.62.R9283
000002327 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.86.139
000002327 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.87.167010
000002327 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.87.186401
000002327 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.65.233103
000002327 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.66.075102
000002327 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.67.161102
000002327 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.90.099702
000002327 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.91.206402
000002327 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.92.126401
000002327 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.92.226402
000002327 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.69.195105
000002327 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.94.156404
000002327 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.95.106402
000002327 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.77.1027
000002327 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.73.165114
000002327 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.74.054513
000002327 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.75.033102
000002327 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.99.036404
000002327 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.76.045108
000002327 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.100.076402
000002327 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.100.136402
000002327 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.78.115102
000002327 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/19/43/433201
000002327 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.72.1545
000002327 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.75.045125
000002327 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epjb/e2006-00248-0
000002327 999C5 $$1R. B. Lehoucq$$2Crossref$$oR. B. Lehoucq ARPACK Users’ Guide 1997$$tARPACK Users’ Guide$$y1997
000002327 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epjb/e2008-00108-y
000002327 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.76.245116
000002327 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.76.104509
000002327 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.69.045116