001     2327
005     20230426083005.0
024 7 _ |a 10.1103/PhysRevB.78.165123
|2 DOI
024 7 _ |a WOS:000260574500044
|2 WOS
024 7 _ |a 2128/11075
|2 Handle
037 _ _ |a PreJuSER-2327
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |a Liebsch, A.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB941
245 _ _ |a Multisite versus multiorbital Coulomb correlations studied within finite-temperature exact diagonalization dynamical mean-field theory
260 _ _ |a College Park, Md.
|b APS
|c 2008
300 _ _ |a
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Physical Review B
|x 1098-0121
|0 4919
|y 16
|v 78
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a The influence of short-range Coulomb correlations on the Mott transition in the single-band Hubbard model at half filling is studied within cellular dynamical mean-field theory for square and triangular lattices. Finite-temperature exact diagonalization is used to investigate correlations within two-, three-, and four-site clusters. Transforming the nonlocal self-energy from a site basis to a molecular-orbital basis, we focus on the interorbital charge transfer between these cluster molecular orbitals in the vicinity of the Mott transition. In all cases studied, the charge transfer is found to be small, indicating weak Coulomb-induced orbital polarization despite sizable level splitting between orbitals. These results demonstrate that all cluster molecular orbitals take part in the Mott transition and that the insulating gap opens simultaneously across the entire Fermi surface. Thus, at half filling we do not find orbital-selective Mott transitions or a combination of band filling and Mott transition in different orbitals. Nevertheless, the approach toward the transition differs greatly between cluster orbitals, giving rise to a pronounced momentum variation along the Fermi surface, in agreement with previous works. The near absence of Coulomb-induced orbital polarization in these clusters differs qualitatively from single-site multiorbital studies of several transition-metal oxides, where the Mott phase exhibits nearly complete orbital polarization as a result of a correlation driven enhancement of the crystal-field splitting. The strong single-particle coupling among cluster orbitals in the single-band case is identified as the source of this difference.
536 _ _ |a Kondensierte Materie
|c P54
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK414
|x 0
542 _ _ |i 2008-10-28
|2 Crossref
|u http://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Ishida, H.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Merino, J.
|b 2
|0 P:(DE-HGF)0
773 1 8 |a 10.1103/physrevb.78.165123
|b American Physical Society (APS)
|d 2008-10-28
|n 16
|p 165123
|3 journal-article
|2 Crossref
|t Physical Review B
|v 78
|y 2008
|x 1098-0121
773 _ _ |a 10.1103/PhysRevB.78.165123
|g Vol. 78
|p 165123
|n 16
|q 78
|0 PERI:(DE-600)2844160-6
|t Physical review / B
|v 78
|y 2008
|x 1098-0121
856 7 _ |u http://dx.doi.org/10.1103/PhysRevB.78.165123
856 4 _ |u https://juser.fz-juelich.de/record/2327/files/PhysRevB.78.165123.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/2327/files/PhysRevB.78.165123.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/2327/files/PhysRevB.78.165123.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/2327/files/PhysRevB.78.165123.jpg?subformat=icon-700
|x icon-700
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/2327/files/PhysRevB.78.165123.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:2327
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 1 _ |k P54
|v Kondensierte Materie
|l Kondensierte Materie
|b Materie
|z entfällt bis 2009
|0 G:(DE-Juel1)FUEK414
|x 0
914 1 _ |y 2008
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
920 1 _ |k IFF-1
|l Quanten-Theorie der Materialien
|d 31.12.2010
|g IFF
|0 I:(DE-Juel1)VDB781
|x 0
970 _ _ |a VDB:(DE-Juel1)105055
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)PGI-1-20110106
999 C 5 |a 10.1080/00018730701619647
|9 -- missing cx lookup --
|1 K. Held
|p 829 -
|2 Crossref
|t Adv. Phys.
|v 56
|y 2007
999 C 5 |a 10.1103/RevModPhys.78.865
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/RevModPhys.68.13
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.92.176403
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.77.115115
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.70.205116
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.76.085127
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 V. I. Anisimov
|y 2002
|2 Crossref
|o V. I. Anisimov 2002
999 C 5 |a 10.1103/PhysRevLett.98.216403
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.94.166402
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.99.126402
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.77.115350
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.92.216402
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.physb.2005.01.414
|9 -- missing cx lookup --
|1 A. Koga
|p 1366 -
|2 Crossref
|t Physica B
|v 359-361
|y 2005
999 C 5 |a 10.1103/PhysRevB.70.165103
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.95.116402
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.72.085114
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/JPSJ.74.2393
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.99.236404
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.49.3596
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.75.1344
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.51.12045
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.58.R7475
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.84.522
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.62.R9283
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.86.139
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.87.167010
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.87.186401
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.65.233103
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.66.075102
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.67.161102
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.90.099702
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.91.206402
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.92.126401
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.92.226402
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.69.195105
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.94.156404
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.95.106402
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/RevModPhys.77.1027
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.73.165114
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.74.054513
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.75.033102
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.99.036404
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.76.045108
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.100.076402
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.100.136402
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.78.115102
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/19/43/433201
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.72.1545
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.75.045125
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1140/epjb/e2006-00248-0
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 R. B. Lehoucq
|y 1997
|2 Crossref
|t ARPACK Users’ Guide
|o R. B. Lehoucq ARPACK Users’ Guide 1997
999 C 5 |a 10.1140/epjb/e2008-00108-y
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.76.245116
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.76.104509
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.69.045116
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21