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[11 An adequate characterization of river bed hydraulic conductivities (L) is crucial for a
proper assessment of river-aquifer interactions. However, river bed characteristics may
change over time due to dynamic morphological processes like scouring or sedimentation
what can lead to erroneous model predictions when static leakage parameters are assumed.
Sequential data assimilation with the ensemble Kalman filter (EnKF) allows for an update
of model parameters in real-time and may thus be capable of assessing the transient
behavior of L. Synthetic experiments with a three-dimensional finite element model of the
Limmat aquifer in Zurich were used to assess the performance of data assimilation in
capturing time-variant river bed properties. Reference runs were generated where L
followed different temporal and/or spatial patterns which should mimic real-world sediment
dynamics. Hydraulic head (%) data from these reference runs were then used as input data
for EnKF which jointly updated /# and L. Results showed that EnKF is able to capture the
different spatio-temporal patterns of L in the reference runs well. However, the adaptation
time was relatively long which was attributed to the fast decrease of ensemble variance. To
improve the performance of EnKF also an adaptive filtering approach with covariance
inflation was applied that allowed a faster and more accurate adaptation of model
parameters. A sensitivity analysis indicated that even for a low amount of observations a
reasonable adaptation of L towards the reference values can be achieved and that EnKF is

also able to correct for a biased initial ensemble of L.
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1. Introduction

[2] Exchange fluxes between surface water and ground-
water can have a profound influence on the chemical envi-
ronment within the hyporheic zone, the riparian ecology,
and the local water balance around streams [Woessner,
2000; Sophocleous, 2002 ; Brunke and Gonser, 1997]. For
water management activities close to rivers, like bank fil-
tration, the amount of exchanged water between river and
aquifer influences the sustainability of groundwater use and
also the quality of pumped groundwater. In order to predict
the hydrological situation around rivers it is essential to
obtain reliable estimates about the parameters that govern
these exchange fluxes between river and groundwater,
namely the river bed conductivities.

[3] Information on exchange coefficients can be inferred
experimentally from different methods ranging from small
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scale measurements like permeameter tests, medium-scale
information like temperature data, as well as water balance
methods for larger scales [Kalbus et al., 2006, and referen-
ces therein]. On the regional scale, especially when manage-
ment of groundwater is present, the most common approach
is to solve the groundwater flow equation with a numerical
model and to calibrate river bed conductivities with observed
head (and concentration) data. The calibrated river bed con-
ductivities can then be used for predicting groundwater lev-
els in the postcalibration period.

[4] Different studies have shown that the fluxes between
river and groundwater are strongly variable in space
and time [e.g., Conant, 2004 ; Krause et al., 2007 ; Kdser
et al., 2009; Rosenberry and Pitlick, 2009a]. The spatial
variability of exchange fluxes is related to the heterogene-
ity of the river bed and the heterogeneity of the adjacent
aquifer [e.g., Fleckenstein et al., 2006; Kalbus et al.,
2009; Frei et al., 2009]. Besides their spatial variability
river bed characteristics may also change over time. Rea-
sons for changing river bed properties may be flooding
events that erode the river bed due to larger shear stress or
an enhanced sedimentation during low flow conditions
that can lead to a colmatation of the river bed [Schdlchli,
1992].

[5] In a flume experiment Rehg et al. [2005] investigated
the effect of clay deposition on exchange fluxes between
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sediment and surface water. They observed the formation of
a thin clogging layer that substantially decreased exchange
fluxes when no movement of the bed sediment was present.
However, when the bed sediment was slightly moved by the
stream current and the particle size of the clay was small
enough the formation of a clogging layer was not detected.
Rosenberry and Pitlick [2009b] also used flume experiments
to investigate the effect of sedimentation of fine particles on
seepage fluxes between sediment and surface water. Their
results showed that the vertical hydraulic conductivity of the
sediment was decreased during downward flux and remained
almost constant during upward flux.

[6] Changes in river bed conductivity have also been
observed at the field scale with different measurement and
modeling techniques. Schubert [2002] investigated the rela-
tion between river dynamics and bank filtration activities at
the river Rhine and found that the permeability of the clog-
ging layer on top of the river bed varied temporally which
was attributed to changes in sediment load of the river, ero-
sion processes in the river bed, and different hydraulic gra-
dients between river and groundwater. Blaschke et al.
[2003] measured leakage coefficients at an impounded river
reach of the Danube and found a decrease of the deter-
mined river bed conductivities of about 2 log units within a
time frame of 2 years which they attributed to clogging
processes. They also found that flooding events led to
temporary increases of river bed permeability at their
site. Doppler et al. [2007] observed a significant change
between model predictions and observations after a major
flooding event which they attributed to the scouring of an
impounded part of the investigated river. Hatch et al.
[2010] used time series thermal methods to quantify the
temporal evolution of river bed conductivities along a river
reach. They observed changes in river bed conductivities of
up to 1 log unit within a sedimentation period of 150 days
and also increasing river bed conductivities due to high
flow conditions. Zhang et al. [2011] used a 3-D model of a
managed site for river bank filtration to investigate the
behavior of river bed permeabilities in relation to manage-
ment activities. They calibrated river bed permeabilities at
several times during a 1 year period and observed changes
of up to a factor of 3 which they related to high and low
flow conditions which were in part induced by management
activities. Genereux et al. [2008] repeatedly measured
streambed hydraulic conductivities over a 1 year period
with permeameter tests. At some of their measurement
locations they observed nearly no change in river bed con-
ductivities over time, whereas for other observation points
river bed conductivities followed different temporal pat-
terns during the measurement campaign which they related
to erosion and deposition processes of the sediment. They
also observed an increase of river bed permeabilities after
the reconstruction of a dam which they attributed to a pos-
sible scouring of the river bed. Mutiti and Levy [2010] used
head and temperature measurements to calibrate river bed
conductivities during flooding events. They observed that
hydraulic conductivities had to be increased around the
discharge peak compared to preflood conditions in order to
accomplish a good fit between measured and simulated
groundwater heads and temperatures. This was also related
to river bed erosion associated with increased shear stress
during the flooding event.
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[7] These observed changes in river bed properties can
have a large impact on the prediction of groundwater or
concentration levels near a river. For instance, when a
groundwater model is calibrated for a certain time period
with a specific, possibly spatially variable, river bed conduc-
tivity which is assumed to be constant for further time peri-
ods this model will not be able to respond to the changes in
model parameters. This will result in systematically errone-
ous predictions of groundwater levels because the fluxes
between river and groundwater are calculated with wrong
parameter values for the river bed conductivities. In case of
transport calculations, e.g., of contaminants, this wrong
parameterization may be even more severe and may result in
strongly biased predictions of the extent and breakthrough of
contamination plumes.

[8] Until present, changes of river bed hydraulic conduc-
tivity are not handled in a systematic way in modeling stud-
ies and we are not aware of papers where a systematic
procedure is proposed to calibrate time-dependent leakage
parameters. In this paper, such an approach is proposed and
its performance is tested in detail in a synthetic experiment
that mimics a real-world case.

[9] Generally, one possible solution for calibrating time-
dependent leakage parameters would be to recalibrate the
model whenever deviations between measured and pre-
dicted groundwater levels exceed a predefined threshold
value. However, these deviations between measurements
and model predictions may also arise from measurement
errors or predictions errors of the groundwater model (i.e.,
model structural errors or errors in the forcings terms). One
could argue that the measurement errors are constant
and known a priori, but the model errors are usually not.
Prediction errors depend on many factors and could be tem-
porally variable as well. For example, the uncertainty in
timing and magnitude of a precipitation or flooding event
could create deviations between measurements and model
predictions which would then lead to a recalibration of
model parameters although these parameters did not change
in reality.

[10] Another approach is to use sequential data assimila-
tion methods like the ensemble Kalman filter (EnKF)
[Evensen, 1994; Burgers et al., 1998] which has already
been used in various studies in groundwater hydrology
[e.g., Chen and Zhang, 2006; Hendricks Franssen and
Kinzelbach, 2008 ; Nowak, 2009; Sun et al., 2009; Huber
et al., 2011] and is able to update model states as well as
model parameters. EnKF offers a flexible framework to
jointly handle different types of errors and uncertainty with
respect to forcings and model errors is relatively straight-
forward to incorporate. Since it is a sequential method it
might also be more suitable for assessing the transient
behavior of river bed conductivities than other calibration
methods. Furthermore, EnKF allows an automatization of
the adaptation of model states and parameters which is an
important issue for real-time modeling and management sys-
tems [e.g., Bauser et al., 2010]. Results from Hendricks
Franssen et al. [2011] indicate that EnKF is able to adapt to
seasonal changes in river bed conductivities caused by the
temperature dependency of viscosity [Doppler et al., 2007;
Engeler et al., 2011] with a time lag of about 3 months
which suggests the principal capability of data assimilation
to capture changes in river bed conductivities. However, no
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systematic investigation of the behavior of EnKF toward
time-variant river bed conductivities has been performed so
far. Thus, the objectives of this study are to:

[11] 1. Identify whether EnKF is able to capture tempo-
ral changes of river bed conductivities under different
conditions.

[12] 2. Identify the most important factors that do affect
the update of river bed conductivities with EnKF.

[13] 3. Find out under which conditions the characteriza-
tion of temporally variable leakage coefficients will yield
improved flow predictions in practice and will therefore be
recommended.

2. Methodology

[14] In this study we use the ensemble Kalman filter to
determine time-varying river bed conductivities. EnKF is a
Monte Carlo based method in which an ensemble of differ-
ent model realizations (e.g., with varying model parameters
or forcings) is propagated forward in time and updated
whenever measurements of the model states (or parame-
ters) become available. In contrast to other calibration tech-
niques EnKF does not adjust parameter values of a model
based on the residuals of the whole calibration period.
Instead, it steps through time and only updates the model
based on the measurements of one time step. EnKF is
therefore an interesting method to calibrate time-dependent
leakage values.

[15] The basic elements of EnKF are the forecast step,
the observation equation, and the analysis step. The fore-
cast step expresses how the states for the current time step
are estimated from the past time step, on the basis of the
simulation model (which solves numerically the governing
equation), initial conditions, boundary conditions, model
forcings, and model parameters:

h? :M(h:7pl~ql) (1)

where i is the stochastic realization (i = 1, ..., Nial), h? is
the model state vector for the current time step, 4; is the
model state vector for the previous time step, p; are model
parameters, g; are model forcings, and M is the forward
model which in our case solves the 3-D groundwater flow
equation for variably saturated conditions. 4? and 4; have
a length that corresponds to the size of the problem, i.e.,
the number of nodes of the model Nodes.

[16] Next the observation equation expresses how the
simulation results at locations of observation points for the
current time step are related to the whole state vector A :

yi=HI, @

where h) is the simulated state vector for the current
time step, y; is a vector for the simulated states at observa-
tion points with a length corresponding to the number of
observations Nps, and H is a matrix that extracts or interpo-
lates the simulated results at observation points from the
simulated state vector with a dimension of Nyps X Nyodes-
[17] The measured states for the current time step ) are
perturbed with values from a normal distribution with a
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mean of 0 and a standard deviation that corresponds to the
measurement error:

W=y +e, 3)

where )° is the measurement vector for the current time
step (with length Noys), €; is a perturbation vector, and )? is
the perturbed measurement vector for realization i.

[18] Finally, the analysis step expresses how the fore-
casted states are corrected by the measurements. In the sim-
plest configuration EnKF only updates the model states (in
our case hydraulic heads) for the whole domain. However,
EnKF has been reformulated so that also model parameters
can be updated with an augmented state vector approach
[e.g., Chen and Zhang, 2006; Hendricks Franssen and
Kinzelbach, 2008]. The augmented state vector approach
implies that the vector with the quantities to be updated in
the data assimilation procedure contains not only the model
states, but also (part of) the parameters. In our study either
hydraulic heads (which correspond to the model state vec-
tor #) and river bed hydraulic conductivities (expressed as
leakage coefficients L) or hydraulic heads, leakage coeffi-
cients and the hydraulic conductivity of the aquifer (K) are
updated. Thus the most general form of the state-parameter
vector x for our setup is given as

h
logyo(K) |, 4
log,o(L)

X =

where £ is the model state vector (i.e., hydraulic heads),
log,((K) and log, (L) are the model parameters that should
be updated and x is the augmented state-parameter vector
with a total length of Nnodes + Nparameters-

[19] The analysis step itself is calculated with the follow-
ing equation:

x5 =x) + G0} - ), (5)

where x¥ is the simulated state-parameter vector of the ith
ensemble member, x; is the updated state-parameter vec-
tor, G is the Kalman gain matrix, and « is a damping factor
that takes values between 0 and 1 and is only used for
updates of model parameters. This damping factor is used
to reduce filter inbreeding, i.e., the underestimation of en-
semble variance in the assimilation process [see Hendricks
Franssen and Kinzelbach, 2008)].

[20] The Kalman gain G in equation (5) is the ratio
between the simulated uncertainty and the sum of simu-
lated and measurement uncertainty:

G=C(HC+R)™", (6)
Chy
C= | Cogxy | Q)
CIOEm(L)}

where C is the covariance matrix of the simulated states
and parameters and R is the covariance matrix of the state
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measurements. The covariance matrix C (equation (7)) is
inferred from the states and parameters of the whole en-
semble [, log,,(K) and log,,(L)] and the simulated values
at observation locations y and has a dimension of
(Nnodes + Nparameters) X Nobs. R is inferred from measure-
ment errors at observation points and has a dimension of
Nobs X Nops. For our numerical experiments covariances
between the measurement errors at different observation
points were set to zero. Therefore, only the variances of ob-
servation points were considered in R.

3. Model Description

[21] The updating of time-variant L was tested in a syn-
thetic experiment, but based on real-world data from the
Limmat aquifer in Zurich (Switzerland). A schematic rep-
resentation of the model domain is shown in Figure 1. The
model domain covers an area of approximately 6 x 2 km.
The rivers Sihl and Limmat are located at the eastern and
northern boundaries of the model domain. In the Hardhof
area (box in Figure 1) groundwater is extracted for drinking
water supply. For that purpose, water is pumped from bank
filtration wells located near river Limmat which is redis-
tributed to the aquifer through several recharge wells and
three recharge basins south of the river. Drinking water is
then extracted through four drinking water wells which are
located between the recharge basins and the river Limmat.
For our simulations the numerical solution of the ground-
water flow equation was calculated with the software
SPRING [Delta h Ingenieurgesellschaft mbH, 2006] which
uses a finite element scheme and is capable of simulating
variably saturated flow and river-aquifer exchange fluxes.
The model domain was discretized into 92,015 nodes,
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173,599 elements, and 25 layers. The average element size
was ~50 m but a higher spatial discretization was present
in the Hardhof area where the average element size was
~20 m and refined up to ~1 m near wells. Vertical discreti-
zation was 1.6 m.

[22] Forcing data for the simulations (river stages,
recharge, pumping schedules, lateral inflows) were taken
from real-world measurements. A detailed description of
how these forcing data are calculated can be found in
Hendricks Franssen et al. [2011]. As a brief overview,
recharge was calculated on the basis of data from the mete-
orological station in Zurich-Affoltern (MeteoSwiss). For
this purpose, potential evapotranspiration (ET) was calcu-
lated according to the Penman-Monteith equation. Actual
ET was then estimated on the basis of calculated potential
ET with the help of a soil water balance model by the
FAO56 method [Allen et al., 1998]. With the measured pre-
cipitation and calculated actual ET the potential recharge
was calculated. Recharge was evenly distributed over the
first layer of the model domain but only 15% of the calcu-
lated recharge was used because most of the model domain
is an urbanized sealed area. Small lateral inflows exist on
the south face of the model where water drains from the
surrounding hill slopes of the Limmat valley. These lateral
inflows were calculated on the basis of the estimated
recharge rates. For the management activities in the Hard-
hof area (river bank filtration, artificial recharge) data for
the extracted/redistributed amounts of water were available
from Water Works Zurich on a daily basis. River stages
were calculated with the help of the hydraulic software
FLORIS (FLORIS2000, Software, Scietec Flussmanage-
ment GmbH, Linz, Austria). Used input for these calcula-
tions were measured river stages at three locations, daily

B recharge basin
Hardhof area
Leakage zone

¢ Bank filtration well
®  Drinking water well
A Recharge well

Observation point

Figure 1.
river Limmat corresponds to leakage zones I-1V.

Schematic representation of model domain. River Sihl corresponds to leakage zone V and
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discharge values for the Limmat and Sihl, and the expected
geometry of the rivers Limmat and Sihl (interpolated from
a large number of registered profiles along the river
courses). Exchange fluxes between river and aquifer are
incorporated in SPRING according to the leakage principle

Q = LA(hriver - hgw)7 (8)
where Q (L3 T7') is the exchange flux between river and
aquifer, hyyer (L) is river stage, hg, (L) is hydraulic head
underneath the river node, 4 (L?) is surface area through
which the flux occurs, and L (T~") is the leakage coefficient
which is a lumped parameter of river bed conductivity and
the depth of the river sediment.

[23] The river was implemented into the model with 457
leakage nodes which reside pairwise at the borders of the
river. The river nodes were subdivided into five leakage
zones with spatially constant L values within each of the
zones. These five zones were originally defined for the
region in order to capture the possible spatial variability of
leakage coefficients. One of the five zones corresponds to
the river Sihl, whereas the river Limmat is divided into
four zones in correspondence with the position of two weirs
and management activities.

[24] Basic model parameters were used from a prior cali-
bration of the model. Porosity was set to a constant value
of 0.15. Hydraulic conductivity K and leakage coefficients
L were precalibrated with data from 87 piezometers for two
calibration periods (June 2004 and July 2005) with the
regularized pilot-point method [de Marsily, 1978; Alcolea
et al., 2006]. The two calibration periods were chosen
because they include some main hydrologic features like
one flooding event, intensive pumping activities, as well as
mean flow conditions.

4. Synthetic Experiments

[25] Multiple reference runs were simulated with the
model described above. These reference runs always had a
specific evolution of L values which should mimic certain
events in the river bed (see Table 1). The starting values of
L for the reference runs were always equal to the ones
determined in the calibration procedure and simulations
were always performed for the period from January 2004 to
August 2005 (609 days). From these reference runs daily
hydraulic head data from 100 observation points were col-
lected which were then used as conditioning data for the
data assimilation with EnKF. The distribution of these ob-
servation points is shown in Figure 1. Observation points
are mainly concentrated in the Hardhof area where most of
the model dynamics takes place which is related to the
pumping and artificial recharge activities in this area. For
most of the ensemble runs with EnKF only L was assumed
to be uncertain. For these scenarios K values and forcing
data were equal to the ones in the reference run. Ensembles
of L were generated by perturbing the log,,(L) values from
the calibration (i.e., the starting values of the reference run)
with samples from a normal distribution with a mean value
of 0 and a standard deviation of 1 log;, (s7!). A total of
100 ensemble members was generated for the simulations
with EnKF. The basic updating scheme for EnKF was to
jointly update 4 and L with data from the 100 observation
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Table 1. Employed Reference Scenarios for the Temporal Evolu-
tion of Leakage Coefficients (L)

Scenario Description Temporal Evolution of L

A Flooding Event L constant until day 155; increase
of L by 1 log unit at day 155;
L remains constant until day 609
L constant until day 200; linear
decrease of log;(L) by 1 log unit
until day 400; L remains constant
until day 609
L constant until day 155; increase
of L by 1 log unit at day 155;
L remains constant until day 200;
linear decrease of log,o(L) (1 log
unit) until day 600; L remains
constant until day 609
D Temperature Dependency L is corrected for daily changes in
of L water viscosity with measured
temperatures of the river Limmat

B Sedimentation Event

C Combined Flooding and
Sedimentation Event

points every 10 days with a damping factor o of 0.1 and a uni-
form measurement error of 0.05 m at the observation points.

[26] In the second part of our study we varied the setup of
the experiments in order to investigate the influence of differ-
ent factors on the update of L with EnKF. This sensitivity
study includes the effect of uncertain hydraulic conductiv-
ities, effects of spatially varying L values, the influence of a
bias in the initial L ensemble and different updating strategies
for EnKF. These different simulations always employed the
reference scenario A from Table 1. Additionally, we per-
formed simulations with an adaptive filtering approach which
has already been used in the atmospheric data assimilation
community and could be beneficial in reducing the possible
problem of filter inbreeding in our simulations.

[27] The updated ensembles of /# and L for the different
reference scenarios were mainly evaluated with respect to
the temporal evolution of the zonal L ensembles and the
temporal evolution of hydraulic head errors at the observa-
tion points. For the evaluation of errors the root mean
square error (RMSE) was calculated:

1 Nobs Nrcal 5
RMSE; = ,|—+—7— hy — B2, ©)
" NobsNreal i—1 ;( Y ! )
1 Nieak Nreal 12
RMSE, = , | ———— [10 L), —lo Lf.e] . (10
L Nicat Neeat 4 Z 8o )4, g10(L); (10)

i=1 j=1

where Ngyps is equal to the number of observation points,
Niear 18 the number of realizations, and M., 1S the number
of leakage zones.

[28] It has to be noted that the evolution of leakage coef-
ficients was not directly evaluated with the parameter L
given in equation (8) but with the slightly modified parame-
ter L* which is the parameter L multiplied with half of the
river width. This was done because the simulation code
internally calculates with L* but that does not directly influ-
ence the outcome of our simulations because the river
width in the whole model domain is rather constant (about
50 m) and our emphasis was to compare the response of
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EnKeF to relative changes toward a reference state (i.e., the
initial L* values of the reference runs). Thus the two param-
eters L and L* are used interchangeably in the following
sections. As there is no explicit information about the
thickness of river sediment in our model domain, river bed
characteristics are always treated as effective parameters in
our model evaluation, i.e., it is not distinguished whether
changes in river bed properties are related to changes in
bed thickness or changes in river bed conductivities.

5. Results
5.1.

[29] In order to mimic a scouring of the river bed after a
flooding event, L was increased by 1 log unit for all zones
of the reference run after a major flooding event on day 155
(scenario A). The evolution of L values of the reference run
for this scenario is shown together with the updated L val-
ues in Figure 2. For the update head observations were
assimilated from the 100 observation points every 10 days
and heads and L values were jointly updated at the observa-
tion times. It can be seen that the ensemble mean remains
fairly constant at the beginning of the simulation. These
nearly constant values at the beginning would be the
expected behavior of EnKF because the initial ensemble
mean for each leakage zone is equal to the leakage values
of the reference run. After the jump of L in the reference
run at day 155 the ensemble mean of updated L values
starts to increase for all five leakage zones. This increase is
strongest shortly after the flooding event and then slows
down markedly within 150 days following the step change,
after which L is nearly constant. The final ensemble means
of L at the end of the simulation period (609 days) do not
exactly match the postflooding reference values but all L
values increase >0.6 log units after the flooding event.

[30] The wvariability of the ensemble continuously
decreases during the course of the simulation (see shaded
area in Figure 2). For the period before day 155 where the
reference values for L are constant this should be the
expected behavior of EnKF because the filter trusts the en-
semble mean which is close to the true value. However, af-
ter the jump in L this process still continues and the
variance in the ensemble of L almost vanished for three of
the five zones by the end of the simulation period.

[31] In Figure 3 the temporal evolution of RMSE of fore-
casted hydraulic heads at observation points for this scenario
is compared with the one of an unconditional ensemble
simulation (i.e., neither 4 nor L are updated) and with a

Increase of L (Scouring Event)
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Figure 3. Temporal evolution (period January 2004—

August 2005) of root mean square error of hydraulic heads
(RMSE,) at observation points for an unconditional simula-
tion (unconditioned, no update of hydraulic heads and leakage
coefficients), an update of hydraulic heads every 10 days
(update /) and for a joint update of hydraulic heads and leak-
age coefficients every 10 days (update 2 + L).

simulation run where only /# was updated every 10 days. For
the unconditional run the error rises by a factor of about
2 during the simulation period compared to the initial error,
whereas RMSE(%4) for the simulation where 4 and L are
updated simultaneously reaches a value of about 5 cm by the
end of the simulation. The error for the sole update of &
remains approximately at the same magnitude as the initial
error but shows rather high fluctuations between the times
when the ensemble is updated. These fluctuations are related
to the higher spread of the ensemble of L compared to the
simulation where also L was updated. After the flooding
event these fluctuations increase in magnitude caused by the
fact that systematic errors are also introduced due to the
increase of L in the reference run which cannot be captured
when only /4 is updated. This also leads to relatively high
errors around day 550 where pumping rates were temporally
increased. In contrast, errors for a joint update of /# and L did
not increase for this event which is related to the adaptation
of L and its decreased ensemble variance.

[32] Figure 4 gives an overview over the fluxes between
river and aquifer. The diagram for the unconditional simu-
lation shows that the variability of positive and negative
fluxes is very high for the utilized initial ensemble of L. For

zone | zone Il zone lll zone IV zone V
-1 -1 -1 -1 -1 —— ensemble mean
-2 29 W TS -2 -2 -2 95% confidence interval
1
3 3 f Il R —~ _3 —~ _g] - - reference
= b e - _ f AT [ i
= = = = ‘ =
s ey 2 s 4 e 3
=3 = <) =3 <) =) ro o=
S s 9 5 S 5 o 5 o =5 __/—_—
-6 -6 -6 -6 -6
-7 -7 -7 -7 -7
— 1T — T T — T T —T—T— T — T T
0 100 300 500 0 100 300 500 0 100 300 500 0 100 300 500 0 100 300 500
time [d] time [d] time [d] time [d] time [d]

Figure 2. Temporal evolution of zonal leakage coefficients (period January 2004—August 2005) for
reference run and update with the ensemble Kalman filter for simulation scenario A (Table 1).
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Figure 4. Temporal evolution (period January 2004—August 2005) of fluxes between river and aquifer
for an unconditional simulation (unconditioned, no update of hydraulic heads and leakage coefficients),
an update of hydraulic heads every 10 days (update %), and for a joint update of hydraulic heads and
leakage coefficients every 10 days (update 2 + L). Fluxes in the upper (positive) part of each diagram

are from river to aquifer and fluxes in the lower part (negative) are from aquifer to river.

unconditional simulations the mean fluxes for both direc-
tions (gaining and loosing conditions of the river) are rather
constant throughout the simulation period with the excep-
tion of two periods of increased pumping activities around
day 120 and day 550. The fluxes for the reference run are
markedly increased after the change in L at day 155. Espe-
cially when only # is updated the ensemble mean for fluxes
from river to aquifer are slightly corrected after each assim-
ilation cycle but it is not possible for EnKF to adjust the
fluxes solely by correcting 4. For a joint update of 4 and L

timestep 100

timestep 200

the ensemble mean of both flux directions is consecutively
adjusted to the reference values which are approximated
very closely after day 450.

[33] Figure 5 additionally shows the spatial distribution
of averaged exchange fluxes for different time steps along
the X axis of the model domain (in the Swiss coordinate
system). For time step 100 the distribution of fluxes is very
similar for all different updating scenarios and also closely
corresponds to the one in the reference run. Shortly after
the change of river bed properties (time step 200) the

timestep 500

8 reference 8 A 8 1
— update h+L
‘? 6 1 updat%_r;, q "? 6 1 .’I__‘ 6 4
» - - unconditione " "
mE 4 1 | mE 4 4 | :')E 4 4
2 1 i 2 4 2
c\|‘ L\‘ c\ll k\ :}l 1| e
o 01= A e O 0 e A i O 0 NP —Aee
At ! = ! =
2 - -2 - -2 -
g g g
-4 - -4 - -4 -
677000 = 679000 = 681000 = 683000 677000 = 679000 = 681000 = 683000 677000 = 679000 = 681000 = 683000
X [m] X [m] X [m]
Figure 5. Spatial distribution of river aquifer exchange fluxes for an unconditional simulation (uncon-

ditioned, no update of hydraulic heads and leakage coefficients), an update of hydraulic heads every
10 days (update /), and for a joint update of hydraulic heads and leakage coefficients every 10 days

(update 2 + L).
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Figure 6. Temporal evolution of zonal leakage coefficients (period January 2004—April 2007) for
reference run and update with the ensemble Kalman filter for simulation scenario B (Table 1).

spatial distributions for the different scenarios all deviate
from the reference run. An update of states and parameters
corrects this deviation as the assimilation proceeds (see
time step 500). However, an update of states alone does not
correct for the biased exchange fluxes.

5.2. Decrease of L (Sedimentation Event)

[34] In a next step a sedimentation event was emulated
in order to verify whether EnKF also adapts to slowly
decreasing L values. A reference run was generated where
L was decreased by 1 log unit over a period of 200 days
(starting from day 200 until day 400) for all five leakage
zones (scenario B). The updating strategy was the same as
for the scouring test case (scenario A). The evolution of L
in the reference run together with the updated L values are
shown in Figure 6. Again the ensemble means for the dif-
ferent zones remain fairly constant before the change in L.
When L starts to decrease after day 200 zonal ensemble
means of L also decrease during the EnKF update with the
exception of the most western zone in the model domain
(zone I). In this part of the aquifer the groundwater levels
are rather close to the river bottom and the initial L values
are low. As a consequence, the leakage fluxes between
river and aquifer are generally low. The modification of L
that we simulated in the reference run has a limited impact
on the hydraulic heads close to the river and therefore pie-
zometric head measurements will not be so effective (com-
pared to other zones) for adapting the value of L. For this
experiment, L generally does not adapt so well to the refer-
ence L values because the adaptation at the end of the simu-
lation period is worse for three of the five zones (as
compared with the scouring experiment). However, when
the simulation time is expanded to 1200 days a similar ad-
aptation as in scenario A was observed for all of the five
zones. The variances of the L ensembles for the different
zones behave similarly to the flooding scenario, i.e., they

show a continuous decrease throughout the simulation pe-
riod. For four of the zones variability within the ensemble
has almost vanished at the end of the simulation period.

5.3. Performance of EnKF for Combined Flooding
and Sedimentation Events

[35] The two simulations described above have shown
that EnKF is principally capable of adapting toward increases
and decreases of L. However, natural sediment dynamics of-
ten exhibit a sequence of sedimentation and scouring events
[e.g., Blaschke et al., 2003]. Therefore, such a scenario was
artificially constructed by appending a sedimentation period
to scenario A. In this scenario L values for all leakage zones
were raised by 1 log unit at day 155. L is then held constant
for 45 days and then again decreased by 1 log unit from day
200 until day 600 in order to simulate a long lasting sedimen-
tation event (scenario C). The evolution of the updated L
ensembles together with the corresponding reference values
is depicted in Figure 7. From all five leakage zones it
becomes obvious that EnKF corrects for both changes of L
within the simulation period. After the flooding event the en-
semble means of L start to increase. Approximately at day
300 this increase reaches an apex and the ensemble means of
L begin to adapt to the decreasing values of the reference
run. The zonal ensemble means of L rise between 0.2 and
0.5 log units in the phase after the flooding event. For all five
leakage zones the reference value is approximately inter-
sected at these maximal values of the ensemble mean of L.
After that peak the ensemble means decrease but only for
one zone (which corresponds to the lowest prior increase
in L) the reference value is reached within the simulation pe-
riod. For the other four leakage zones the ensemble means
adapt rather slowly toward the reference line. This again
shows that the adaptation with EnKF toward changes in L
has a rather long response time which does not optimally
capture rapid changes in river bed properties.
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Figure 7. Temporal evolution of zonal leakage coefficients (period January 2004—August 2005) for
reference run and update with the ensemble Kalman filter for simulation scenario C (Table 1).
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5.4. Temperature Dependency of L

[36] Apart from mechanically induced changes of the
river bed like scouring and sedimentation the hydraulic
conductivity of the river bed can also be influenced on a
seasonal scale by temperature variations of the river due to
the temperature dependency of viscosity as can be seen
from equations (11) and (12) [Muskat, 1937]:

K.
K(T) = Tff (11)
w(T) = 2.414 x 1075107, (12)

where K(7) is temperature dependent hydraulic conductiv-
ity (L T™"), Kin is intrinsic permeability of the porous me-
dium (L?), p is density of water (M L), g is acceleration
of gravity (L T~?), u(T) is temperature dependent dynamic
viscosity of water (M L~' T~"), and T is temperature (6).
[37] Within our simulation period the measured tempera-
tures of the river Limmat varied from 4 to 26°C, which
translates into a variation of viscosity of up to a factor of
1.7, whereas the change of water density in this tempera-
ture range is less than 1%. It has been shown by Engeler
et al. [2011] that this temperature dependency of L can
have a profound influence on the predicted groundwater dy-
namics close to rivers. In our simulation model L values are
not corrected for temperature variations of the river but
usually these variations occur in natural settings. Therefore,
we created a reference run in which these natural variations
of L occur and tested whether EnKF is able to follow these
changes. For this purpose, we corrected the L values of all
leakage nodes of the reference run with the measured tem-
perature of the river Limmat on a daily basis so that all
leakage nodes follow the same variation pattern (scenario
D). The temporal evolution of zonal L values of the refer-
ence run is shown in Figure 8 together with the updated en-
semble values. The L values of the reference run follow a
seasonal cycle with higher values during the summer
months and lower values during winter. The maximal
change of L values for the reference run within the simula-
tion period was 0.23 log units and thus is lower than for the
previous scenarios. For zones I and II the update of L with
EnKF shows some temporal changes but they do not corre-
spond very well with the temporal dynamics of the refer-
ence run. For zones IIl to V the temporal evolution of
updated L values is more close to the reference run espe-
cially for zone III. Again a certain time lag is observed
between the reference and the updated L values which
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seems to be a bit higher for zones IV and V than for zone
II1. The rather high sensitivity of zone III toward the tem-
perature-dependent changes of L may be related to the fact
that the highest exchange fluxes between river and aquifer
occur in this part of the model domain. As a result, the en-
semble of L values for this zone responds well to the low
changes of L that are induced by the temperature depend-
ency. For leakage zones I and II the groundwater table is
very close to the river bottom and thus the fluxes between
river and aquifer are rather low, which might be a cause for
the rather low sensitivity of these two zones. For leakage
zones IV and V the groundwater table is significantly lower
than the river bottom but also the L values are low for
these two zones, which results in lower exchange fluxes
compared to leakage zone III and may be a cause for the
lower sensitivity toward the relatively small changes in L
that are induced by river temperature fluctuations.

5.5.

[38] For the previous simulations the change in L was
always realized in a spatial homogeneous fashion, i.e., L was
changed for all five zones with the same magnitude. In natu-
ral systems changes in L due to sedimentation or scouring
are expected to happen in a more spatially inhomogeneous
fashion. This may happen for example due to meandering of
the river which provides spatial sequences of sedimentation
and scouring zones which may proceed downstream over
time. Also storm events may cause scouring of the river bed
preferentially at certain zones where flow velocities and thus
shear stress is higher. Therefore, we also investigated how
EnKF reacts toward changes in L that occur only at a part of
the river reach. For this setup the value of L was only
increased for leakage zone III, while for the other zones L
remained constant throughout the simulation period. Results
for this setup are shown in Figure 9. The ensemble means
for the four zones which are not subjected to any changes in
L remain almost constant throughout the simulation period.
For zone III EnKF adapts the ensemble mean closely to the
reference value by the end of the simulation and the course
of the adaptation curve is similar to the ones observed when
the L values for all zones are increased (see Figure 2). This
means that EnKF captures the spatially separated evolution
of L for the different zones which is possibly due to the fact
that correlations between the hydraulic heads at the observa-
tion points and the L ensemble at the four other leakage
zones are rather weak. Beforehand it was expected that at
least the two neighboring leakage zones would also be
affected by the update with EnKF because the filter might
give some weight to them in the updating procedure.

Influence of Spatial Patterns
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Figure 8. Temporal evolution of zonal leakage coefficients (period January 2004—August 2005) for
reference run and update with the ensemble Kalman filter for simulation scenario D (Table 1).
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Figure 9. Temporal evolution of zonal leakage coefficients (period January 2004—August 2005) for
reference run and update with the ensemble Kalman filter when the zonal leakage coefficient of zone III
in the reference run is increased by 1 log unit at day 155.

However, this was not the case in this scenario. One possible
reason could be that the leakage zone is close to the man-
aged site (Hardhof area) where the groundwater pumping
and artificial recharge takes place. Therefore, the ground-
water levels at the observation points in this area which com-
prise the major part of all observation points are especially
affected by changes of the increasing leakage zone.

5.6.

[39] In previous simulations L was the only uncertain pa-
rameter and hydraulic conductivities of the aquifer were
assumed to be known exactly. This assumption was intro-
duced in order to isolate the effect of uncertain L values in
the update with EnKF. This simplification is rarely justified
for real world examples because the uncertainty regarding
K very often governs the uncertainty of model output. Fur-
thermore, it was shown [e.g., Kalbus et al., 2009] that het-
erogeneity of the underlying aquifer plays a major role for
exchange fluxes between river and aquifer and thus should
ideally not be neglected for the simulations. For these rea-
sons simulations were performed in which also the ensemble
members of K are different among each other. The ensemble
of K was generated by conditional sequential Gaussian simu-
lation [Gomez-Hernandez and Journel, 1993] on a very fine
grid which was then upscaled to the simulation grid through
simplified renormalization [Renard et al., 2000]. For details
of the ensemble generation see Hendricks Franssen et al.
[2011]. For these realizations the variance in In(K) was 2.7.

[40] The setup of this experiment was similar to scenario
A with the only difference that the ensemble of K showed
the described uncertainty and values of K and L were
jointly updated together with hydraulic heads via EnKF.
When comparing the temporal evolution of zonal ensemble
means of L (Figure 10) only small differences are observ-

Influence of Uncertain Hydraulic Conductivities

able between the runs with and without uncertain K values.
The RMSE of hydraulic heads at observation points during
the first 100 days was higher for the ensemble with uncer-
tain K values compared to the one with deterministic K val-
ues which is due to the additional uncertainty for this
parameter. In later steps RMSE for both simulations is very
similar which is mainly caused by the adaptation of K val-
ues with EnKF which decreases the variance of K in the
assimilation process. A comparison of the initial and
updated mean fields of log,o(K) is given in Figure 11. It can
be seen that the initial mean field of log;((K) is relatively
smooth. During assimilation the structure of the log;y(K)
generally gets more patchy because every finite element of
the model is allowed to update separately. However, the
major distribution of log;¢(K) values (increasing values from
east to west) is preserved.

5.7.

[41] Besides the uncertainty regarding hydraulic conduc-
tivities mentioned in section 5.6 the updating of L with
EnKF may also be affected by a bias of the initial ensemble
of L. In the previous simulations the zonal mean values of
the initial ensemble of L were equal to the true values of the
reference run. However, in real-world situations information
on river bed conductivities within the model domain often is
scarce and the generation of the initial ensemble of L may
thus only rely on a few or even no measurement data. There-
fore, we created an initial ensemble of L where the ensemble
means of all five leakage zones were the same and corre-
sponded to the arithmetic mean of log,,(L) values of the ref-
erence run (averaged over all five leakage zones). The
ensemble variances of the different zones were similar to
the ones in the previous simulations. Results for this biased
initial ensemble are shown in Figure 12. Because all zonal

Influence of Ensemble Bias
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Figure 10. Temporal evolution of zonal leakage

coefficients (period January 2004—August 2005) for

reference run and an update of either leakage coefficients alone (ensemble mean L) or a joint update of
leakage coefficients and hydraulic conductivities of the aquifer (ensemble mean L + K) for simulation

scenario A (Table 1).
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Ensemble mean of log;((K) for initial ensemble (left) and at time step 600 (right) for model

layer 4 when hydraulic conductivities and leakage coefficients are jointly updated every 10 days.

ensemble means of L started with the same value the bias
between the initial ensemble mean and the reference value
is different among the five leakage zones. During the period
before the increase of L in the reference run (up to day 155)
the ensemble means of all zones more or less tend to move
toward their corresponding reference value. After the jump
of L values in the reference run ensemble means of all zones
start to increase no matter whether their tendency was to
increase or decrease before the flooding event. The evolu-
tion of zonal L values looks rather similar to the ones shown
before, i.c., a steeper increase at the beginning which flattens
after about 100 days. Also the variance of the ensembles
behaves similar to the previous examples. Due to the initial
bias the absolute performance of EnKF is not as good as for
a case where the zonal ensemble means are closer to the
true values. However, a distinct reaction of EnKF toward
the true values is clearly visible.

5.8. Sensitivity on Updating Strategy

[42] The performance of EnKF in part depends on the
amount of available observation data and on filter specific
settings like the number of ensemble members, the updat-
ing interval, or the damping factor o. Compared to the base
scenarios (100 ensemble members, update frequency of 4
and L: 10 days, a = 0.1, 100 head observations) each of
these meta parameters was changed in order to see whether
they significantly affect the performance of EnKF for our
setup. The different parameters for each of these scenarios
are summarized in Table 2 where scenario “base” is essen-
tially the base scenario which serves as a reference for the
other scenarios.

[43] An increase of the ensemble size to 200 ensemble
members (scenario “ens_200”) did not significantly
improve L compared to the base scenario as the perform-
ance for one of the leakage zones slightly decreases.

[44] The effect of updating frequency on the evolution of
L can be seen in Figure 13 for four different updating fre-
quencies (1, 2, 5, and 10 days). In general, an increase of
the updating frequency for # and L did not lead to an
improvement of L updates. For an updating frequency of 5
days the adaptation of L was slightly faster for zone III but
the performance for the other zones was equal or slightly
worse compared to the base scenario. An updating fre-
quency of 1 or 2 days did not increase performance in any
of the five leakage zones. Especially for zones II and IV the
performance degrades when /4 and L are updated very fre-
quently. A reason for this behavior may again lie in the fast
decrease of ensemble variance in the updating procedure.
In Figure 13 also the ensemble standard deviation is com-
pared for the different updating frequencies. With decreas-
ing updating intervals the ensemble variance also decreases
very rapidly for all leakage zones. For updating frequencies
of 1 or 2 days the ensemble variance is almost zero before
the change in L at day 155, whereas for lower updating fre-
quencies more variability is maintained in the ensemble.

[45] For a sensitivity analysis on the number of observa-
tions points, six different configurations were compared where
the number of observation points ranged from 5 to 200. The
observation points for the scenarios “nobs_5” to “nobs_50”
always were a subset of the scenario “nobs_100,” which is
the configuration used in the previous simulations (equal to
the base scenario). For these scenarios the observation points
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Figure 12. Temporal evolution of zonal leakage

coefficients (period January 2004—August 2005) for

reference run and update with the ensemble Kalman filter for scenario A when the initial ensemble mean
of leakage coefficients was biased compared to the initial values of the reference run.
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Table 2. Different Updating Scenarios for Zonal Leakage Coefficients

Update Frequency Number of Number of Damping
Name of Scenario h + L (day) Ensemble Members Observation Points Factor «
Base 10 100 100 0.1
fupd_xx x=1,2,510 100 100 0.1
ens_xx 10 xx =100, 200 100 0.1
nobs_xx 10 100 xx =5, 10, 20, 0.1

50, 100, 200
damp_xx 10 100 100 xx=0.1,0.2,
0.5, 1.0

were coincident, e.g., the observation points for scenario
“nobs_5" were contained in all other scenarios. One excep-
tion is the comparability between scenario “nobs_20” and
“nobs_50,” where both scenarios only shared 10 observation
points. For the scenario “nobs_200” 100 additional observa-
tion points were added to “nobs_100" and these were spread
over the whole model domain. In Figure 14 the temporal evo-
lution of RMSE(L) is compared for the different number of
observation points. It is clearly visible that the errors in L are
inversely correlated to the number of observation points. For
the pre-event period the differences among the scenarios are
mostly related to the different decrease in ensemble variance,
which means that the ensemble variance in case of few obser-
vation points does not decrease as fast as for a larger amount
of observation points. In the postevent period also the differ-
ent updating behavior toward L contributes to the differences
among the scenarios. At the end of the simulation period the
errors in L follow an exponential decrease with the number
of observation points. However, it can be observed that even
as little as 10 observation points result in a reduction of
RMSE(L) of 70% as compared to the open loop simulations.
Nevertheless, RMSE(L) is roughly twice as large at the end
of the simulation period for 10 observation points compared
with that for 100 observation points.

[46] A closer look at the temporal evolution of the zonal
ensemble means of L for the different scenarios (data not
shown) reveals that the updating capability of EnKF for the
two zones close to the Hardhof area (zones II and III) and for

the Sihl (zone V) is rather similar among the scenarios,
whereas for the two other zones the updating capability is
more strongly dependent on the number of observation points.
This might be an indicator that the observation points which
were used for the simulations with a lower number of obser-
vation points generally had a lower sensitivity toward these
two leakage zones. This also means that in order to be able to
adapt the L values for all leakage zones a sufficient number
and spatial distribution of observation points is needed.

[47] Furthermore, it was tested whether the damping fac-
tor « could be raised for the update of L which could possi-
bly lead to a faster adaptation of zonal ensemble means
toward reference values. This option was tested for four
values of « (0.1, 0.2, 0.5, and 1.0). Results for the different
values of the damping factor (data not shown) showed that
higher values than 0.1 (the base updating scenario) gener-
ally lead to a worse performance of EnKF in updating the
zonal ensemble means toward the reference values, which
is possibly related to the more rapid decrease in ensemble
variance for higher o values which is in accordance with
the findings by Hendricks Franssen and Kinzelbach [2008].

5.9. Use of Covariance Inflation to Improve Filtering
Results of EnKF

[48] In all different scenarios it became obvious that the
response time of EnKF to adapt for changing L values is
rather long, which is to some part related to the fast decrease
in ensemble variance. In order to compensate for this loss of
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Figure 13. Temporal evolution (period January 2004—August 2005) of ensemble mean (upper row)
and ensemble standard deviation (lower row) of zonal leakage coefficients for different updating fre-
quencies of hydraulic heads and leakage coefficients (simulation scenario A).
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Figure 14. Temporal evolution (period January 2004—
August 2005) of root mean square error of leakage coeffi-
cients for different numbers of observation points (simula-
tion scenario A).

variance which is related to filter inbreeding, we applied co-
variance inflation which could possibly improve the
response time of EnKF and is a common approach in atmos-
pheric data assimilation [e.g., Hamill et al., 2001 ; Anderson,
2007, 2009]. For covariance inflation an inflation factor A is
used to spread the ensemble around its mean value before
every assimilation step:

[49] Before each assimilation cycle every element i of
the state-parameter vector x; for the jth realization is
inflated around the ensemble mean X; with the inflation fac-
tor \. This means that the ensemble mean X; for every ele-
ment is preserved and only the spread of the ensemble is
slightly increased. In atmospheric sciences it was especially
in the past common to set the inflation factor A to a constant
value [e.g., Hamill et al., 2001]. Recently, it has also been
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proposed to make A temporally and spatially variable [e.g.,
Anderson, 2007, 2009]. We used the inflation method pro-
posed by Anderson [2007] in which A is temporally vari-
able. In this method a Bayesian update is performed on A
every assimilation cycle and the new value of A is mainly a
function of ensemble variance, measurement errors, devia-
tions between observations and simulations, and the var-
iance of A itself (which is kept constant in our case). This
approach allows EnKF to correct for deficiencies in the
assimilation process (i.e., filter divergence) by inflating the
ensemble based on the residuals at observation points and
the ensemble variance. An outline of the used algorithm is
given in Appendix A. For a more detailed insight into the
methodology we refer to Anderson [2007].

[s0] Figure 15 compares the evolution of L for scenario
A without and with adaptive covariance inflation. For the
simulations with adaptive inflation L values for all zones
reach the reference values more closely than for simula-
tions without inflation. Furthermore, the adaptation time to
reach a certain L value is slightly decreased when covari-
ance inflation is used. The evolution of ensemble variance
for covariance inflation also shows the expected behavior.
Before the flooding event the decrease in variance is com-
parable to the simulations without inflation. When L is
increased in the reference run A values increase due to the
higher residuals at the observation points which also leads
to an increasing ensemble variance which allows EnKF to
update L more closely (and faster) to the reference values.

[s1] It was already mentioned that an increase of « in
the simulations without inflation leads to a worse perform-
ance of EnKF. This effect can be seen in the upper row of
Figure 16 where a was set to a value of 0.2. In this case
the adaptation time for zones III and V is decreased but the
absolute adaptation for zones II and IV were worse com-
pared to o = 0.1. However, when covariance inflation is
used for this example L is adapted faster and more accurate
compared to the base case (i.e., no inflation, o = 0.1).

[52] We additionally repeated the simulations for the
other three base case scenarios (scenario B, C, and D) with
covariance inflation for « = 0.2 (see Figure 17). For
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Figure 16. Comparison of temporal evolution of zonal leakage coefficients without (top row) and with
(bottom row) adaptive covariance inflation for scenario A (damping factor o = 0.2).

scenarios B and C the adaptation time generally decreases
and also the accuracy at the end of the assimilation period
is improved although for one zone (zone I in scenario B)
some slight instability occurs which again is possibly
related to the low sensitivity of this zone for that scenario
which was also obvious from the corresponding base case
scenario. For the variability of L due to temperature
changes (scenario D) a positive effect of covariance infla-
tion was not significant which is most likely related to the
small changes of L in this scenario.

[53] It has already been mentioned that an increase of
updating frequency did not improve the adaptation of L for
the base scenario. However, when covariance inflation is
used (see Figure 18) the adaptation time can generally be
decreased with a higher updating frequency. This can be
observed for all of the five leakage zones where updating
frequencies of 2 or 5 days consistently performed better
than an updating frequency of 10 days. The ensemble
standard deviation (lower row in Figure 18) increases after
the change in L at day 155 due to covariance inflation.
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Figure 17. Temporal evolution of zonal leakage coefficients with adaptive covariance inflation for
scenario B (top row), C (middle row), and D (bottom row) (damping factor a = 0.2).
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Figure 18. Temporal evolution (period January 2004—August 2005) of ensemble mean (top row) and en-
semble standard deviation (bottom row) of zonal leakage coefficients for different updating frequencies of
hydraulic heads and leakage coefficients with covariance inflation (simulation scenario A).

Especially for an updating frequency of 2 days this increase
in ensemble variance is already rather high for certain leak-
age zones. For an updating frequency of 1 day (data not
shown) this increase in ensemble variance is even higher
which leads to numerical problems in the groundwater
model due to rather extreme L values. Hence, a simulation
with an updating frequency of one day could not be per-
formed successfully. Nevertheless, updating frequencies of
2 or 5 days together with covariance inflation improved the
adaptation of L considerably in terms of response time.

6. Discussion

[s4] The update of L with EnKF showed some general
characteristics among all scenarios. In almost every case all
zonal mean values of L were updated by EnKF in order to
follow the trend of the reference run. For the scenario with
either an increase or decrease of L the updated zonal en-
semble means were quite close to the reference values at
the end of the simulation period. However, the adaptation
time to achieve this improvement was somewhat high
within all scenarios. This also became obvious in the sce-
nario where a flooding and a sedimentation event were
combined within the simulation period. Here the slow ad-
aptation led to the effect that the changes in zonal ensemble
means were within a smaller margin and the extreme values
of the reference run were never reached.

[55] A reason for the slow adaptation may lie in the
rather rapid decrease of ensemble spread during the simula-
tions. The decrease of variance is already obvious in the
time before a change happens in the L values of the refer-
ence run and proceeds as the L values are adapted by
EnKF. The lowering of the ensemble spread before a
change in L occurs in the reference run is a native feature
of EnKF. In this case the zonal ensemble means are close
to the reference values and because of this the errors in hy-
draulic heads are rather small. Therefore, the filter “trusts”
the ensemble means and adapts the extreme values of the
ensemble toward the ensemble mean, which consecutively

lowers the ensemble spread. However, this decrease of var-
iance during the period of constant L values then possibly
hampers the adaptation by EnKF toward the changed L val-
ues. Directly after the sudden change of L, differences
between simulated and measured piezometric heads become
larger, but the limited ensemble variance implies that the
model predictions have a relatively large weight in the
EnKF procedure, limiting the influence of the observations
and slowing down the adaptation of L. The use of adaptive
inflation leads to a faster adaptation of L toward the refer-
ence values and at the same time to a more precise determi-
nation of L at the end of the simulation period compared to
the use of EnKF without inflation. In general, the adaptive
inflation method seems to be robust to time-variant model
parameters and it also honors changes in the prediction capa-
bility of the forward model by increasing the variance for a
larger prediction error.

[s6] In our experiments we also found that increasing the
updating frequency is not necessarily a straightforward so-
lution to achieve a shorter response time of EnKF because
increasing the updating frequency leads to a faster decrease
of ensemble variance especially in periods where the river
bed is stable. This leads to some overconfidence of model
parameters which influences the update of parameters nega-
tively when there is a change in river bed conditions. On
the contrary, when covariance inflation is used in the EnKF
updating scheme a positive effect of updating frequency on
the adaptation time of L could be found due to the regula-
tion of ensemble variance by this method. However, even
with a higher updating frequency of L together with covari-
ance inflation there is a certain time lag until EnKF
responds to instantaneous changes of the river bed. Such in-
stantaneous changes are likely to occur in reality, e.g., as a
consequence of flooding events within a typical time period
from hours to days. When such changes in the river bed are
persistent over a certain time period, EnKF will be able to
adapt model parameters gradually within several assimila-
tion cycles (depending on the settings for meta parameters
such as updating frequency or damping factor). This means
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that predictions of states will also improve step by step
until EnKF adapts to the new parameter values. However,
when there are very frequent fluctuations in river bed prop-
erties that are faster than the assimilation frequency or even
the time step of the model, EnKF will only capture the
effective changes of the river bed and smooth them tempo-
rally. For such changes one would have to increase the tem-
poral resolution of the forward model in order to reduce the
effective response time of EnKF but this would probably
also require a higher temporal resolution of measurements
which is not possible in many cases.

[57] The performance of EnKF with respect to seasonal
variation of L caused by temperature changes of the river
showed that the ensemble means of L for three of the five
leakage zones principally followed the trend of the refer-
ence run although the whole magnitude of the change was
not reached through updates with EnKF. For the other two
zones changes of the ensemble mean of L were observable
but did not correspond well to the evolution of L values of
the reference run. The absolute changes of L were far lower
for this scenario compared to the flooding and sedimenta-
tion cases. As a consequence, the errors at observation
points as well as the correlations between the hydraulic
head data at the observation points and the zonal leakage
coefficients were lower, which might have led to a lower
adaptation for two of the zones. Nevertheless, the results
showed that even for small changes of L a correction with
EnKF is principally possible.

[s8] The results for the influence of spatial patterns on
the update with EnKF showed that EnKF is also able to
detect changes in L that only occur at a certain location of
the river reach. This might be relevant when the flow re-
gime and thus the sedimentation/scouring regime is not ho-
mogeneous within the river, e.g., due to dams or weirs or
due to a meandering of the river. However, a prerequisite
that allows an optimal spatial update of L with EnKF in a
real-world case is that the position of leakage zones corre-
sponds to the sediment dynamics in the river bed. Cer-
tainly, alternative parameterization methods like pilot
points laid out over stochastic fields of L are an interesting
alternative which was not investigated in the context of this
study.

[s9] EnKF was also able to correct for a bias in the initial
ensemble which is important for a real-world scenario
because it is often difficult to achieve a good initial guess
of L values that provide a good agreement between simu-
lated and measured states due to their high variability in
natural settings. However, a correction of ensemble bias
will require a sufficient initial ensemble spread of L.

[60] Several different other tests were performed for
evaluating the performance of EnKF for updating L. Our
ensemble size was found not to be too small, because
results for an ensemble twice as large were not better. The
damping parameter used was according the suggestions of
Hendricks Franssen and Kinzelbach [2008] and increasing
it gave worse results except for the simulations where
adaptive covariance inflation was used.

[61] The sensitivity toward the amount of observation
points showed that the ability of EnKF to correct for the
time-varying L values generally increased with an increas-
ing number of observation points. However, the results also
showed that even with a low number of observation points
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(e.g., 5 or 10) the time-varying L values of EnKF could be
reproduced quite well (150 days after the leakage jump the
RMSE for L was reduced 50% for 10 observations and
20% for 5 observations compared to unconditional simula-
tions). This may also be important for real-world applica-
tions because usually the amount of available time series of
head data for a particular site is rather limited. For our
study site the utilization of 100 observation points for the
base case scenarios was reasonable because for the real
world case 87 piezometer data are available for this site on
a daily basis. A doubling of the number of observation
points from 100 to 200 did not significantly increase the per-
formance of EnKF. This might be related to the fact that the
simulations with 100 observation points already had a rela-
tively high information content, which was sufficient for the
observed adaptations. Thus, the additional 100 observations
points possibly only contained redundant information.

[62] In general, the calibration of time-dependent L with
EnKF using a limited number of piezometers is possible,
with the limitations indicated before. We believe that this is
the first work where a systematic approach to calibrate time-
dependent L was proposed, carefully tested, and shown to be
feasible. A point of criticism could be that this approach
only adapts L with help of indirect observations, without try-
ing to predict the changes of L directly. However, both direct
observations of modifications of L and deterministic predic-
tion of changes of L are difficult and not possible at large
scales. If indirect methods can reliably detect changes of L,
this will provide new information at larger scales that can be
used to better understand the mechanisms behind the
changes of L. An additional limitation of the methodology
followed in this paper is that L is updated, and not the two
parameters which constitute L, the river bed thickness and
river bed hydraulic conductivity. Although it would have
been desirable to distinguish between the two parameters,
this was beyond the scope of this paper:

[63] 1. Measurement data most probably do not allow for
differentiating between changes in river bed thickness and
river bed hydraulic conductivity.

[64] 2. We would need a very high resolution modeling
of the river bed (on the cm scale) with the need to include
many more grid cells (now we already have nearly 100,000
nodes and 173,599 elements).

[65] 3. In order to truly represent the dynamics of the
river bed, the modeling grid should be adaptive and
allowed to change over time. Such an approach is challeng-
ing in the context of forward model runs, but in the context
of inverse modeling/data assimilation not yet feasible.

[66] It is of course always a question whether the results
found in this study are related to specific conditions at this
site. It is possible that the groundwater management activ-
ities (pumping, artificial recharge) provide additional in-
formation which help to constrain the estimation of L. Some
of the simulation scenarios were also repeated without these
management activities, but results were very similar.

7. Conclusions

[67] In this study we investigated to what extent the en-
semble Kalman filter is able to correct states and parame-
ters of a groundwater model for temporal changes in the
hydraulic properties of a river bed. For this purpose we
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created different synthetic scenarios in which the river bed
conductivities followed certain temporal patterns that
should imitate natural river bed dynamics. Calculations
were based on a 3-D model of the Limmat aquifer (Zurich)
and the updating procedure for the model states and param-
eters with the ensemble Kalman filter was done with hy-
draulic head data of the corresponding synthetic reference
simulations.

[68] Results for the different scenarios indicate the prin-
cipal capability of EnKF to account for changes in river
bed conductivity. This was shown for different types of
major changes of the river bed (i.e., erosion of the river bed
due to a flooding event, sedimentation, and a combined sce-
nario) in which EnKF correctly adjusted L values of the en-
semble toward the reference values with a good overall
performance at the end of the simulations. Also seasonal
changes with smaller fluctuations of L related to the tem-
perature dependency of L could in part be compensated by
EnKF. Furthermore, EnKF was able to handle and correct
for different types of uncertainty in the assimilation process
(uncertain hydraulic conductivities of the aquifer, biased
initial ensemble). One drawback is the relatively long adap-
tation time that is needed by EnKF to adjust to new L val-
ues. In our simulations it took about 150 days until EnKF
corrected the ensemble for an instantaneous change in L of
1 log unit. For modifications of L with a longer time dura-
tion like a sedimentation event, the delayed response of
EnKF also was observed. For real-world applications it will
depend on the time scale of river bed dynamics whether
EnKF reasonably catches changes in L. Frequent changes
in river bed characteristics will only in part be captured by
data assimilation if L is not updated very frequently, which
means that EnKF just adjusts L for effective changes within
a given time period. However, experiments with an adapt-
ive covariance inflation approach suggest that the perform-
ance of EnKF to capture time-variant model parameters
can be generally improved by this method as it reduced the
total adaptation time and increased the overall accuracy of
the parameter update.

[69] In summary, from a practical point of view the use
of data assimilation with EnKF seems to be a promising
way to account for changes of river sediments in real time
models because of its capability to account for different
changes of the river bed even if they have a low magnitude
and because it is also able to handle different sources of
uncertainty within the modeling process. Also the sensitiv-
ity analysis with respect to the numbers of observation
points underpins the usability of EnKF for real time models
because it showed that even with a low number of observa-
tions, an often encountered situation in practice, it is possi-
ble to capture changes in river bed conductivities.

Appendix A: Algorithm for Adaptive Covariance
Inflation

[70] In accordance with Anderson [2007] a Bayesian
updating scheme is used to calculate the inflation factor A
for each assimilation step. In this updating scheme the
simulated ensemble estimate at observation points y, the
measurement at observation points y°, and their respective
variances 012, and o2 are used to estimate a new value of A
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in order to correct the model ensemble for effects of filter
divergence. The basic updating equation for the assimila-
tion time step ¢, ; can be stated as

P\ tai) ~ OO IN) PN, tai1), (A1)

where p(), t,;) is the posterior probability distribution of ),
p(A, t,:-1) is the prior probability distribution, and p(yoi)\)
is a likelihood term that describes the probability that y~ is
observed given a certain .

[71] The prior distribution in equation (A1) is assumed to
follow a normal distribution:

PN tai) =N(Xy, 03,). (A2)

[72] It is also assumed that the prior of A is identical to
the posterior from the last assimilation cycle. The likeli-
hood term in equation (Al) is also expressed as a normal
distribution:

pO°IN) = (V2r) " exp(—D?/26°), (A3)

where D is the actual distance between simulated ensemble
mean at observation points y, and the measured value 3

D=1y, —' (Ad)

and 6 is a measure for the variability of this distance for a
certain value of \:

0= ,/)\a;qLa(z).

[73] Inserting the equations of the prior and the likelihood
function into equation (A1) gives

(AS)

PO tas) ~ (V270) " exp(~D? 2PN (R, 03,). (A6

[74] For the determination of the inflation factor A for the
current assimilation cycle A is set equal to the mode of
equation (A6) which is found by differentiating the right-
hand side of (A6) and setting it to zero. This results in a
cubic equation of the form

- 1 1
X - (oﬁ + )\le,)xz + —Uiof,x - Ea&aﬁDz =0, (A7)

2

where x = #*. Solving this equation with the cubic formula
and substituting the results into equation (A5) gives the
value of X for the respective observation.
[75] The utilized algorithm for covariance inflation in our
study can be summarized as follows:
1. Propagate the ensemble forward until the next obser-
vations y° are available.
2. Determine y and o from the ensemble.
3. For each observation of y° do the following steps:
(a) Determine D with equation (A4).
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(b) Solve equation (A7) for x and insert the result in
equation (AS5) to determine A. _
4. From the distribution of A\ calculate A and update the
state-parameter vector x according to equation (13).
[76] In our implementation of the algorithm we set the
variance of the inflation factor o3 to a constant value of
0.25 instead of using a model for the evolution of this pa-
rameter as it was done by Anderson [2007]. This was also
suggested as an algorithmic variant by Anderson [2009].
Additionally, we put a constraint on the values of A by
setting values of less than 1, which could occur when the
filter is very confident (i.e., low residuals, to a value of 1).
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