000023577 001__ 23577
000023577 005__ 20180210141523.0
000023577 0247_ $$2DOI$$a10.1006/cviu.2002.0970
000023577 0247_ $$2WOS$$aWOS:000179265800003
000023577 037__ $$aPreJuSER-23577
000023577 041__ $$aeng
000023577 082__ $$a004
000023577 084__ $$2WoS$$aComputer Science, Artificial Intelligence
000023577 084__ $$2WoS$$aEngineering, Electrical & Electronic
000023577 1001_ $$0P:(DE-Juel1)VDB3187$$aSpies, H.$$b0$$uFZJ
000023577 245__ $$aRange flow estimation
000023577 260__ $$aSan Diego, Calif.$$bElsevier$$c2002
000023577 300__ $$a209 - 231
000023577 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000023577 3367_ $$2DataCite$$aOutput Types/Journal article
000023577 3367_ $$00$$2EndNote$$aJournal Article
000023577 3367_ $$2BibTeX$$aARTICLE
000023577 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000023577 3367_ $$2DRIVER$$aarticle
000023577 440_0 $$08401$$aComputer Vision and Image Understanding$$v85$$x1077-3142
000023577 500__ $$aRecord converted from VDB: 12.11.2012
000023577 520__ $$aWe discuss the computation of the instantaneous 3D displacement vector fields of deformable surfaces from sequences of range data. We give a novel version of the basic motion constraint equation that can be evaluated directly on the sensor grid. The various forms of the aperture problem encountered are investigated and the derived constraint solutions are solved in a total least squares (TLS) framework. We propose a regularization scheme to compute dense full flow fields from the sparse TLS solutions. The performance of the algorithm is analyzed quantitatively for both synthetic and real data. Finally we apply the method to compute the 3D motion field of living plant leaves. (C) 2002 ENevier Science (USA).
000023577 536__ $$0G:(DE-Juel1)FUEK257$$2G:(DE-HGF)$$aChemie und Dynamik der Geo-Biosphäre$$cU01$$x0
000023577 588__ $$aDataset connected to Web of Science
000023577 650_7 $$2WoSType$$aJ
000023577 65320 $$2Author$$arange data sequences
000023577 65320 $$2Author$$atotal least squares
000023577 65320 $$2Author$$aaperture problem
000023577 65320 $$2Author$$aregularization
000023577 7001_ $$0P:(DE-HGF)0$$aJähne, B.$$b1
000023577 7001_ $$0P:(DE-HGF)0$$aBarron, J. L.$$b2
000023577 773__ $$0PERI:(DE-600)1462895-8$$a10.1006/cviu.2002.0970$$gVol. 85, p. 209 - 231$$p209 - 231$$q85<209 - 231$$tComputer vision and image understanding$$v85$$x1077-3142$$y2002
000023577 909CO $$ooai:juser.fz-juelich.de:23577$$pVDB
000023577 9131_ $$0G:(DE-Juel1)FUEK257$$bEnvironment (Umwelt)$$kU01$$lChemie und Dynamik der Geo-Biosphäre$$vChemie und Dynamik der Geo-Biosphäre$$x0
000023577 9141_ $$y2002
000023577 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000023577 9201_ $$0I:(DE-Juel1)VDB49$$d31.12.2006$$gICG$$kICG-III$$lPhytosphäre$$x0
000023577 970__ $$aVDB:(DE-Juel1)14425
000023577 980__ $$aVDB
000023577 980__ $$aConvertedRecord
000023577 980__ $$ajournal
000023577 980__ $$aI:(DE-Juel1)IBG-2-20101118
000023577 980__ $$aUNRESTRICTED
000023577 981__ $$aI:(DE-Juel1)IBG-2-20101118
000023577 981__ $$aI:(DE-Juel1)ICG-3-20090406