000023756 001__ 23756
000023756 005__ 20240712100857.0
000023756 0247_ $$2DOI$$a10.1029/2001JD000692
000023756 0247_ $$2WOS$$aWOS:000180490000012
000023756 0247_ $$2ISSN$$a0141-8637
000023756 0247_ $$2Handle$$a2128/20898
000023756 037__ $$aPreJuSER-23756
000023756 041__ $$aeng
000023756 082__ $$a550
000023756 084__ $$2WoS$$aMeteorology & Atmospheric Sciences
000023756 1001_ $$0P:(DE-Juel1)129123$$aGünther, G.$$b0$$uFZJ
000023756 245__ $$aThe meteorological conditions of the stratosphere for the CRISTA2 campaign (August 1997)
000023756 260__ $$aWashington, DC$$bUnion$$c2002
000023756 300__ $$a
000023756 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000023756 3367_ $$2DataCite$$aOutput Types/Journal article
000023756 3367_ $$00$$2EndNote$$aJournal Article
000023756 3367_ $$2BibTeX$$aARTICLE
000023756 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000023756 3367_ $$2DRIVER$$aarticle
000023756 440_0 $$06393$$aJournal of Geophysical Research D: Atmospheres$$v107$$x0148-0227
000023756 500__ $$aRecord converted from VDB: 12.11.2012
000023756 520__ $$a[1] During the CRISTA 2 campaign in August 1997 the Antarctic polar vortex according to UK Met Office (UKMO) data was strong but temporarily disturbed by planetary waves. This winter was in general warmer than the five previous winters; nevertheless, temperatures cold enough to allow the formation of nitric acid trihydrate (NAT) and ice particles occurred throughout the period from mid-June to the end of August. The cold vortex core developed in the potential temperature range from 400 to 700 K at the beginning of the winter, initially centered at 600 K but slowly progressing downward to 450 K in the subsequent months. The vortex disturbances showed a clear zonal wave number 1 and 2 pattern. This planetary wave activity caused a strong day-to-day fluctuation of the vortex shape. During August when the second Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA 2) mission took place the vortex was elongated toward the southern Atlantic Ocean, processing slowly eastward. The perturbation of the vortex was associated with air masses transported from middle and low latitudes into the polar region in small-scale streamers. Similarly, tongues of vortex air peeled off the vortex edge and moved equatorward, enhancing the exchange between polar regions and the tropics. In addition, the disturbance of the vortex led to the generation of filaments at the inner side of the vortex edge, thus covering the vortex interior with small-scale structures. A comparison between CRISTA observations and potential vorticity derived from UKMO data shows discrepancies concerning small-scale structures. High-resolution potential vorticity fields calculated from reverse domain filling trajectory simulations on isentropic surfaces based on horizontal winds from UKMO analyses and vertical motion from diabatic calculations are much more consistent with the measurements. Both observation and reverse domain filling (RDF) simulations show the strong atmospheric variability of this period of unusual enhanced planetary wave activity in the Southern Hemisphere.
000023756 536__ $$0G:(DE-Juel1)FUEK257$$2G:(DE-HGF)$$aChemie und Dynamik der Geo-Biosphäre$$cU01$$x0
000023756 588__ $$aDataset connected to Web of Science
000023756 650_7 $$2WoSType$$aJ
000023756 65320 $$2Author$$aCRISTA 2
000023756 65320 $$2Author$$asatellite observations
000023756 65320 $$2Author$$aAntarctic stratosphere
000023756 65320 $$2Author$$astratospheric meteorology
000023756 65320 $$2Author$$aatmospheric transport
000023756 65320 $$2Author$$aplanetary waves
000023756 7001_ $$0P:(DE-Juel1)VDB8771$$aMcKenna, D. S.$$b1$$uFZJ
000023756 7001_ $$0P:(DE-HGF)0$$aSpang, R.$$b2
000023756 773__ $$0PERI:(DE-600)2016800-7 $$a10.1029/2001JD000692$$gVol. 107$$q107$$tJournal of geophysical research / Atmospheres $$tJournal of Geophysical Research$$v107$$x0148-0227$$y2002
000023756 8567_ $$uhttp://dx.doi.org/10.1029/2001JD000692
000023756 8564_ $$uhttps://juser.fz-juelich.de/record/23756/files/2001JD000692.pdf$$yOpenAccess
000023756 8564_ $$uhttps://juser.fz-juelich.de/record/23756/files/2001JD000692.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000023756 909CO $$ooai:juser.fz-juelich.de:23756$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000023756 9131_ $$0G:(DE-Juel1)FUEK257$$bEnvironment (Umwelt)$$kU01$$lChemie und Dynamik der Geo-Biosphäre$$vChemie und Dynamik der Geo-Biosphäre$$x0
000023756 9141_ $$y2002
000023756 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000023756 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000023756 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000023756 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000023756 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000023756 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer review
000023756 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000023756 9201_ $$0I:(DE-Juel1)VDB47$$d31.12.2006$$gICG$$kICG-I$$lStratosphäre$$x0
000023756 970__ $$aVDB:(DE-Juel1)14711
000023756 9801_ $$aFullTexts
000023756 980__ $$aVDB
000023756 980__ $$aConvertedRecord
000023756 980__ $$ajournal
000023756 980__ $$aI:(DE-Juel1)IEK-7-20101013
000023756 980__ $$aUNRESTRICTED
000023756 981__ $$aI:(DE-Juel1)ICE-4-20101013
000023756 981__ $$aI:(DE-Juel1)IEK-7-20101013