000023758 001__ 23758
000023758 005__ 20240712100905.0
000023758 017__ $$aTo view the published open abstract, go to http://dx.doi.org/10.1029/2001JD001423
000023758 0247_ $$2DOI$$a10.1029/2001JD001423
000023758 0247_ $$2WOS$$aWOS:000180870100011
000023758 0247_ $$2ISSN$$a0141-8637
000023758 0247_ $$2Handle$$a2128/565
000023758 037__ $$aPreJuSER-23758
000023758 041__ $$aeng
000023758 082__ $$a550
000023758 084__ $$2WoS$$aMeteorology & Atmospheric Sciences
000023758 1001_ $$0P:(DE-Juel1)129138$$aMüller, R.$$b0$$uFZJ
000023758 245__ $$aChlorine activation and chemical ozone loss deduced from HALOE and balloon measurements in the Arctic during the Winter of 1999-2000
000023758 260__ $$aWashington, DC$$bUnion$$c2003
000023758 300__ $$aD5
000023758 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000023758 3367_ $$2DataCite$$aOutput Types/Journal article
000023758 3367_ $$00$$2EndNote$$aJournal Article
000023758 3367_ $$2BibTeX$$aARTICLE
000023758 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000023758 3367_ $$2DRIVER$$aarticle
000023758 440_0 $$06393$$aJournal of Geophysical Research D: Atmospheres$$v108$$x0148-0227
000023758 500__ $$aRecord converted from VDB: 12.11.2012
000023758 520__ $$a[1] We employ Halogen Occultation Experiment (HALOE) observations and balloon-borne measurements (on the large Observations of the Middle Stratosphere [OMS] and Triple balloons, as well as on two small balloons) to investigate ozone loss in the stratospheric vortex in the 1999-2000 Arctic winter. Using HF and CH4 as long-lived tracers, we identify chlorine activation and chemical ozone destruction in the polar vortex. Reference relations, representative of chemically undisturbed "early vortex'' conditions, are derived from the OMS remote and in situ balloon measurements on 19 November and 3 December 1999, respectively. Deviations from this "early vortex'' reference are interpreted as chemical ozone loss and heterogeneous chlorine activation. The observations show an extensive activation of chlorine; in late February 2000, the activation extends to altitudes of 600 K. Between 360 and 450 K chlorine was almost completely activated. At that time, about 70% of the HCl column between 380 and 550 K was converted to active chlorine. Furthermore, the measurements indicate severe chemical ozone loss, with a maximum loss of over 60% in the lower stratosphere (415-465 K) by mid-March 2000. Substantial ozone loss was still observable in vortex remnants in late April 2000 (80 +/- 10 Dobson units [DU] between 380 and 550 K). The average loss in column ozone between 380 and 550 K, inside the vortex core, in mid-March amounted to 84 +/- 13 DU.
000023758 536__ $$0G:(DE-Juel1)FUEK257$$2G:(DE-HGF)$$aChemie und Dynamik der Geo-Biosphäre$$cU01$$x0
000023758 588__ $$aDataset connected to Web of Science
000023758 650_7 $$2WoSType$$aJ
000023758 65320 $$2Author$$aArctic ozone loss
000023758 65320 $$2Author$$achemical ozone destruction
000023758 65320 $$2Author$$avortex remnants
000023758 65320 $$2Author$$atracer relationships
000023758 65320 $$2Author$$amixing across vortex edge
000023758 7001_ $$0P:(DE-Juel1)VDB1652$$aTilmes, S.$$b1$$uFZJ
000023758 7001_ $$0P:(DE-Juel1)129122$$aGrooß, J. U.$$b2$$uFZJ
000023758 7001_ $$0P:(DE-Juel1)VDB8771$$aMcKenna, D. S.$$b3$$uFZJ
000023758 7001_ $$0P:(DE-Juel1)VDB1106$$aMüller, M.$$b4$$uFZJ
000023758 7001_ $$0P:(DE-Juel1)VDB1434$$aSchmidt, U.$$b5$$uFZJ
000023758 7001_ $$0P:(DE-HGF)0$$aToon, G. C.$$b6
000023758 7001_ $$0P:(DE-HGF)0$$aStachnik, S. S.$$b7
000023758 7001_ $$0P:(DE-HGF)0$$aMargitan, J. J.$$b8
000023758 7001_ $$0P:(DE-HGF)0$$aElkins, J. W.$$b9
000023758 7001_ $$0P:(DE-HGF)0$$aArvelius, J.$$b10
000023758 7001_ $$0P:(DE-HGF)0$$aRussell III, J. M.$$b11
000023758 773__ $$0PERI:(DE-600)2016800-7 $$a10.1029/2001JD001423$$gVol. 108, p. D5$$pD5$$q108<D5$$tJournal of geophysical research / Atmospheres $$tJournal of Geophysical Research$$v108$$x0148-0227$$y2003
000023758 8567_ $$uhttp://hdl.handle.net/2128/565$$uhttp://dx.doi.org/10.1029/2001JD001423
000023758 8564_ $$uhttps://juser.fz-juelich.de/record/23758/files/hal2k_ready.pdf$$yOpenAccess
000023758 8564_ $$uhttps://juser.fz-juelich.de/record/23758/files/hal2k_ready.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000023758 8564_ $$uhttps://juser.fz-juelich.de/record/23758/files/hal2k_ready.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000023758 8564_ $$uhttps://juser.fz-juelich.de/record/23758/files/hal2k_ready.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000023758 909CO $$ooai:juser.fz-juelich.de:23758$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000023758 9131_ $$0G:(DE-Juel1)FUEK257$$bEnvironment (Umwelt)$$kU01$$lChemie und Dynamik der Geo-Biosphäre$$vChemie und Dynamik der Geo-Biosphäre$$x0
000023758 9141_ $$y2003
000023758 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000023758 9201_ $$0I:(DE-Juel1)VDB47$$d31.12.2006$$gICG$$kICG-I$$lStratosphäre$$x0
000023758 970__ $$aVDB:(DE-Juel1)14713
000023758 9801_ $$aFullTexts
000023758 980__ $$aVDB
000023758 980__ $$aJUWEL
000023758 980__ $$aConvertedRecord
000023758 980__ $$ajournal
000023758 980__ $$aI:(DE-Juel1)IEK-7-20101013
000023758 980__ $$aUNRESTRICTED
000023758 980__ $$aFullTexts
000023758 981__ $$aI:(DE-Juel1)ICE-4-20101013
000023758 981__ $$aI:(DE-Juel1)IEK-7-20101013