000023765 001__ 23765
000023765 005__ 20240712100850.0
000023765 0247_ $$2DOI$$a10.1029/2001JD000698
000023765 0247_ $$2WOS$$aWOS:000180490000001
000023765 0247_ $$2ISSN$$a0141-8637
000023765 0247_ $$2Handle$$a2128/20885
000023765 037__ $$aPreJuSER-23765
000023765 041__ $$aeng
000023765 082__ $$a550
000023765 084__ $$2WoS$$aMeteorology & Atmospheric Sciences
000023765 1001_ $$0P:(DE-HGF)0$$aSpang, R.$$b0
000023765 245__ $$aCRISTA observations of cirrus clouds around the tropopause
000023765 260__ $$aWashington, DC$$bUnion$$c2002
000023765 300__ $$aD23
000023765 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000023765 3367_ $$2DataCite$$aOutput Types/Journal article
000023765 3367_ $$00$$2EndNote$$aJournal Article
000023765 3367_ $$2BibTeX$$aARTICLE
000023765 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000023765 3367_ $$2DRIVER$$aarticle
000023765 440_0 $$06393$$aJournal of Geophysical Research D: Atmospheres$$v107$$x0148-0227
000023765 500__ $$aRecord converted from VDB: 12.11.2012
000023765 520__ $$a[1] The Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) instrument observed thin cirrus clouds at and above the tropopause during its two missions in November 1994 and August 1997. A simple cloud detection scheme was developed for extinctions greater than 2 x 10(-3) km(-1) through analysis of the measured infrared spectra in the 12-mum range. Horizontal and vertical distributions of cloud occurrence frequencies are in good agreement with the Stratospheric Aerosol and Gas Experiment (SAGE) II subvisual cirrus cloud (SVC) climatology as well as SAGE measurements for the 1997 period. Seasonal variations, strong longitudinal variability, and indications of enhanced cloud occurrence frequencies in separated regions caused by El Nino events were detected in the CRISTA data set. A substantial day-to-day variability could be found throughout the tropics, and several regions with enhanced variability have been identified. In addition, a significant amount of cloud was found above the midlatitude tropopause. Backward trajectories in relation to outgoing longwave radiation (OLR) measurements and cloud observation in the troposphere by meteorological satellites suggest that about three fourths of the high clouds (> 15 km) observed by CRISTA in the tropics stem from deep convection systems and the outflow of these systems. This would imply that on the order of at least one fourth of the observed cloud events are originated by other mechanisms, such as in situ formation due to cooling events on synoptic and/or gravity wave scales. For the convective generated cirrus clouds, a maximum lifetime of around 3-4 days was estimated over a wide range of latitudes. Such a long lifetime could be important for modeling the impact of cirrus clouds on radiation budget (climate) and heterogeneous chemical processes around the tropopause.
000023765 536__ $$0G:(DE-Juel1)FUEK257$$2G:(DE-HGF)$$aChemie und Dynamik der Geo-Biosphäre$$cU01$$x0
000023765 588__ $$aDataset connected to Web of Science
000023765 650_7 $$2WoSType$$aJ
000023765 7001_ $$0P:(DE-HGF)0$$aEidmann, G.$$b1
000023765 7001_ $$0P:(DE-Juel1)129145$$aRiese, M.$$b2$$uFZJ
000023765 7001_ $$0P:(DE-Juel1)VDB1185$$aOffermann, D.$$b3$$uFZJ
000023765 7001_ $$0P:(DE-HGF)0$$aPfister, L.$$b4
000023765 7001_ $$0P:(DE-HGF)0$$aWang, P. H.$$b5
000023765 773__ $$0PERI:(DE-600)2016800-7 $$a10.1029/2001JD000698$$gVol. 107, p. D23$$pD23$$q107<D23$$tJournal of geophysical research / Atmospheres  $$tJournal of Geophysical Research$$v107$$x0148-0227$$y2002
000023765 8567_ $$uhttp://dx.doi.org/10.1029/2001JD000698
000023765 8564_ $$uhttps://juser.fz-juelich.de/record/23765/files/2001JD000698.pdf$$yOpenAccess
000023765 8564_ $$uhttps://juser.fz-juelich.de/record/23765/files/2001JD000698.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000023765 909CO $$ooai:juser.fz-juelich.de:23765$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000023765 9131_ $$0G:(DE-Juel1)FUEK257$$bEnvironment (Umwelt)$$kU01$$lChemie und Dynamik der Geo-Biosphäre$$vChemie und Dynamik der Geo-Biosphäre$$x0
000023765 9141_ $$y2002
000023765 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000023765 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000023765 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000023765 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000023765 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000023765 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer review
000023765 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000023765 9201_ $$0I:(DE-Juel1)VDB47$$d31.12.2006$$gICG$$kICG-I$$lStratosphäre$$x0
000023765 970__ $$aVDB:(DE-Juel1)14720
000023765 9801_ $$aFullTexts
000023765 980__ $$aVDB
000023765 980__ $$aConvertedRecord
000023765 980__ $$ajournal
000023765 980__ $$aI:(DE-Juel1)IEK-7-20101013
000023765 980__ $$aUNRESTRICTED
000023765 981__ $$aI:(DE-Juel1)ICE-4-20101013
000023765 981__ $$aI:(DE-Juel1)IEK-7-20101013