000023766 001__ 23766
000023766 005__ 20240712100857.0
000023766 0247_ $$2DOI$$a10.1029/2002JD002213
000023766 0247_ $$2WOS$$aWOS:000181823400003
000023766 0247_ $$2ISSN$$a0141-8637
000023766 0247_ $$2Handle$$a2128/7627
000023766 037__ $$aPreJuSER-23766
000023766 041__ $$aeng
000023766 082__ $$a550
000023766 084__ $$2WoS$$aMeteorology & Atmospheric Sciences
000023766 1001_ $$0P:(DE-Juel1)VDB1652$$aTilmes, S.$$b0$$uFZJ
000023766 245__ $$aCalculation of chemical ozone loss in the Arctic winter 1996-1997 using ozone-tracer correlations : comparison of ILAS and HALOE results
000023766 260__ $$aWashington, DC$$bUnion$$c2003
000023766 300__ $$a4045
000023766 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000023766 3367_ $$2DataCite$$aOutput Types/Journal article
000023766 3367_ $$00$$2EndNote$$aJournal Article
000023766 3367_ $$2BibTeX$$aARTICLE
000023766 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000023766 3367_ $$2DRIVER$$aarticle
000023766 440_0 $$06393$$aJournal of Geophysical Research D: Atmospheres$$v108$$x0148-0227$$yD2
000023766 500__ $$aRecord converted from VDB: 12.11.2012
000023766 520__ $$a[1] The ozone-tracer correlation method is used to deduce the stratospheric ozone loss in the Arctic winter 1996-1997. Improvements of the technique are applied, such as a new calculation of the vortex edge [Nash et al., 1996] and an improved early vortex reference function. Winter 1996-1997 is characterized by a late formation and an unusually long lifetime of the polar vortex. Remnants of vortex air were found until May. Chemical ozone losses deduced from two satellite data sets, namely Improved Limb Atmospheric Spectrometer (ILAS) and Halogen Occultation Experiment (HALOE), are discussed. The ILAS observations allow a detailed analysis of the temporal evolution of the ozone-tracer correlation inside the polar vortex and, in particular, of the development of the early vortex. For November and December 1996, it is shown that horizontal mixing still influences the ozone-tracer relation. Significant PSC related chemical ozone loss occurred beginning at mid-February, and the averaged column ozone loss is increasing toward the middle of May. From April onwards, ozone profiles in the vortex became more uniform. The decrease of ozone in the vortex remnants in April and May occurred due to chemistry. HALOE observations are available for March to May 1997. In the period 4-16 March 1997, the calculated ozone loss deduced from HALOE and ILAS is in good agreement. The average of the result from the two instruments is 15 +/- 7 Dobson units (DU) inside the vortex core, in the altitude range of 450-550 K. At the end of March, a discrepancy between HALOE and ILAS ozone loss arises due to a significant difference (0.6 ppmv) between the two data sets in the relatively low ozone minimum measured at 475 K. Nonetheless, both data sets consistently show an inhomogeneity in ozone loss inside the vortex core at the end of March. The vortex is separated in two parts, one with a large ozone loss (HALOE 40-45 DU, ILAS 30-35 DU) and one with a moderate ozone loss (HALOE 15-30 DU, ILAS 5-25 DU) for 450-550 K. The ozone loss from HALOE in 380-550 K at that time was calculated to be 90-110 DU for the large ozone loss and 20-80 DU for the moderate ozone loss. The vortex average of column ozone loss from HALOE inside the vortex core at the end of March is 61 +/- 20 DU, which is an increase of about 20% compared to the earlier study by Muller et al. [1997b] brought about by the improvement of the technique.
000023766 536__ $$0G:(DE-Juel1)FUEK257$$2G:(DE-HGF)$$aChemie und Dynamik der Geo-Biosphäre$$cU01$$x0
000023766 588__ $$aDataset connected to Web of Science
000023766 65320 $$2Author$$aArctic ozone loss
000023766 65320 $$2Author$$achemical ozone destruction
000023766 65320 $$2Author$$aozone-tracer relationship
000023766 65320 $$2Author$$aILAS satellite measurements
000023766 65320 $$2Author$$aHALOE satellite measurements
000023766 65320 $$2Author$$aArctic winter 1996-1997
000023766 650_7 $$2WoSType$$aJ
000023766 7001_ $$0P:(DE-Juel1)129138$$aMüller, R.$$b1$$uFZJ
000023766 7001_ $$0P:(DE-Juel1)129122$$aGrooß, J. U.$$b2$$uFZJ
000023766 7001_ $$0P:(DE-Juel1)VDB8771$$aMcKenna, D. S.$$b3$$uFZJ
000023766 7001_ $$0P:(DE-HGF)0$$aRussell III, J. M.$$b4
000023766 7001_ $$0P:(DE-HGF)0$$aSasano, Y.$$b5
000023766 773__ $$0PERI:(DE-600)2016800-7 $$a10.1029/2002JD002213$$gVol. 108, p. 4045$$p4045$$q108<4045$$tJournal of geophysical research / Atmospheres  $$tJournal of Geophysical Research$$v108$$x0148-0227$$y2003
000023766 8567_ $$uhttp://dx.doi.org/10.1029/2002JD002213
000023766 8564_ $$uhttps://juser.fz-juelich.de/record/23766/files/Tilmes_2003.Calculation.pdf$$yOpenAccess
000023766 8564_ $$uhttps://juser.fz-juelich.de/record/23766/files/Tilmes_2003.Calculation.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000023766 8564_ $$uhttps://juser.fz-juelich.de/record/23766/files/Tilmes_2003.Calculation.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000023766 8564_ $$uhttps://juser.fz-juelich.de/record/23766/files/Tilmes_2003.Calculation.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000023766 909CO $$ooai:juser.fz-juelich.de:23766$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000023766 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000023766 9141_ $$y2003
000023766 9131_ $$0G:(DE-Juel1)FUEK257$$bEnvironment (Umwelt)$$kU01$$lChemie und Dynamik der Geo-Biosphäre$$vChemie und Dynamik der Geo-Biosphäre$$x0
000023766 9201_ $$0I:(DE-Juel1)VDB47$$d31.12.2006$$gICG$$kICG-I$$lStratosphäre$$x0
000023766 970__ $$aVDB:(DE-Juel1)14721
000023766 9801_ $$aFullTexts
000023766 980__ $$aVDB
000023766 980__ $$aJUWEL
000023766 980__ $$aConvertedRecord
000023766 980__ $$ajournal
000023766 980__ $$aI:(DE-Juel1)IEK-7-20101013
000023766 980__ $$aUNRESTRICTED
000023766 980__ $$aFullTexts
000023766 981__ $$aI:(DE-Juel1)ICE-4-20101013
000023766 981__ $$aI:(DE-Juel1)IEK-7-20101013