001     23919
005     20240708133740.0
024 7 _ |2 DOI
|a 10.1116/1.1450585
024 7 _ |2 WOS
|a WOS:000174711100031
024 7 _ |a altmetric:21808880
|2 altmetric
037 _ _ |a PreJuSER-23919
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Materials Science, Coatings & Films
084 _ _ |2 WoS
|a Physics, Applied
100 1 _ |a Roschek, T.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB5948
245 _ _ |a Comprehensive study of microcrystalline silicon solar cells deposited at high rate using 13.56 MHz plasma-enhanced chemical vapor deposition
260 _ _ |a New York, NY
|b Inst.
|c 2002
300 _ _ |a 492 - 498
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Journal of Vacuum Science and Technology A
|x 0734-2101
|0 3987
|v 20
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a In this article we present a comprehensive study of microcrystalline silicon (PC-Si:H) p-i-n solar cells prepared by using plasma-enhanced chemical vapor deposition (PECVD) at 13.56 MHz excitation frequency. In the first step the cell development was performed in a small area PECVD reactor showing the relationship between the deposition process parameters and the resulting solar cell performance. Subsequent up-scaling to a substrate area of 30 X 30 cm confirmed the scalability of optimized deposition parameters to large area reactors. We investigated the deposition regime of high rf power P (rf) (0.25-0.7 W/cm(2)) and high deposition pressure P (dep) (1 - 11 Torr) for the muc-Si:H i layer. Furthermore, the influence of silane concentration and deposition temperature was studied. A transition between amorphous and microcrystalline growth could be achieved by a variation of either deposition pressure, plasma power, or silane concentration. The best microcrystalline silicon solar cells were prepared close to the transition to amorphous growth. A high deposition pressure was a prerequisite for obtaining, high quality material at a high growth rate. The best solar cell efficiencies achieved so far are 8.1% and 6.6% at i-layer growth rates of 5 and 10 Angstrom/s, respectively, for muc-Si:H single junction cells. Applied in a-Si:H/muc-Si:H tandem cells a stabilized efficiency of 10.0% was achieved. (C) 2002 American Vacuum Society.
536 _ _ |a Photovoltaik
|c E02
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK247
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Repmann, T.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB5981
700 1 _ |a Müller, J.
|b 2
|u FZJ
|0 P:(DE-Juel1)VDB2892
700 1 _ |a Rech, B.
|b 3
|u FZJ
|0 P:(DE-Juel1)VDB5941
700 1 _ |a Wagner, H.
|b 4
|u FZJ
|0 P:(DE-Juel1)VDB5911
773 _ _ |a 10.1116/1.1450585
|g Vol. 20, p. 492 - 498
|p 492 - 498
|q 20<492 - 498
|0 PERI:(DE-600)1475424-1
|t Journal of vacuum science & technology / A
|v 20
|y 2002
|x 0734-2101
909 C O |o oai:juser.fz-juelich.de:23919
|p VDB
913 1 _ |k E02
|v Photovoltaik
|l Erneuerbare Energien
|b Energie
|0 G:(DE-Juel1)FUEK247
|x 0
914 1 _ |y 2002
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k IPV
|l Institut für Photovoltaik
|d 31.12.2006
|g IPV
|0 I:(DE-Juel1)VDB46
|x 0
970 _ _ |a VDB:(DE-Juel1)14991
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-3-20101013
981 _ _ |a I:(DE-Juel1)IEK-5-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21