000023923 001__ 23923
000023923 005__ 20240712084523.0
000023923 017__ $$aThis version is available at the following Publisher URL: http://prl.aps.org
000023923 0247_ $$2DOI$$a10.1103/PhysRevLett.88.075508
000023923 0247_ $$2WOS$$aWOS:000174021100045
000023923 0247_ $$2Handle$$a2128/1218
000023923 037__ $$aPreJuSER-23923
000023923 041__ $$aeng
000023923 082__ $$a550
000023923 084__ $$2WoS$$aPhysics, Multidisciplinary
000023923 1001_ $$0P:(DE-Juel1)VDB2799$$aSzot, K.$$b0$$uFZJ
000023923 245__ $$aLocalized metallic conductivity and self-healing during thermal reduction of SrTiO3
000023923 260__ $$aCollege Park, Md.$$bAPS$$c2002
000023923 300__ $$a075508-1
000023923 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000023923 3367_ $$2DataCite$$aOutput Types/Journal article
000023923 3367_ $$00$$2EndNote$$aJournal Article
000023923 3367_ $$2BibTeX$$aARTICLE
000023923 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000023923 3367_ $$2DRIVER$$aarticle
000023923 440_0 $$04925$$aPhysical Review Letters$$v88$$x0031-9007
000023923 500__ $$aRecord converted from VDB: 12.11.2012
000023923 520__ $$aThe occurrence of metallic conductivity in SrTiO3 single crystals is reported for reduction under low partial pressure of oxygen at 800 degreesC. This transition is shown to result from the formation of a high concentration of vacancy defects along a network of extended defects within the skin region. A self-healing phenomenon is observed for progressive reduction which causes the concentration of initially introduced defects to decrease in the course of heat treatment and leads to a breakdown of the metallic conductivity as well as a substantial loss of optical subgap absorption.
000023923 536__ $$0G:(DE-Juel1)FUEK247$$2G:(DE-HGF)$$aPhotovoltaik$$cE02$$x0
000023923 536__ $$0G:(DE-Juel1)FUEK252$$aMaterialien, Prozesse und Bauelemente für die  Mikro- und Nanoelektronik$$cI01$$x1
000023923 588__ $$aDataset connected to Web of Science
000023923 650_7 $$2WoSType$$aJ
000023923 7001_ $$0P:(DE-Juel1)125382$$aSpeier, W.$$b1$$uFZJ
000023923 7001_ $$0P:(DE-Juel1)VDB4964$$aCarius, R.$$b2$$uFZJ
000023923 7001_ $$0P:(DE-Juel1)130309$$aZastrow, U.$$b3$$uFZJ
000023923 7001_ $$0P:(DE-Juel1)VDB5907$$aBeyer, W.$$b4$$uFZJ
000023923 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.88.075508$$gVol. 88, p. 075508-1$$p075508-1$$q88<075508-1$$tPhysical review letters$$v88$$x0031-9007$$y2002
000023923 8564_ $$uhttps://juser.fz-juelich.de/record/23923/files/14995.pdf$$yOpenAccess
000023923 8564_ $$uhttps://juser.fz-juelich.de/record/23923/files/14995.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000023923 8564_ $$uhttps://juser.fz-juelich.de/record/23923/files/14995.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000023923 8564_ $$uhttps://juser.fz-juelich.de/record/23923/files/14995.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000023923 909CO $$ooai:juser.fz-juelich.de:23923$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000023923 9131_ $$0G:(DE-Juel1)FUEK247$$bEnergie$$kE02$$lErneuerbare Energien$$vPhotovoltaik$$x0
000023923 9131_ $$0G:(DE-Juel1)FUEK252$$bInformation$$kI01$$lInformationstechnologie mit nanoelektronischen Systemen$$vMaterialien, Prozesse und Bauelemente für die  Mikro- und Nanoelektronik$$x1
000023923 9141_ $$y2002
000023923 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000023923 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000023923 9201_ $$0I:(DE-Juel1)VDB46$$d31.12.2006$$gIPV$$kIPV$$lInstitut für Photovoltaik$$x0
000023923 9201_ $$0I:(DE-Juel1)VDB35$$d31.12.2003$$gIFF$$kIFF-EKM$$lElektrokeramische Materialien$$x1
000023923 970__ $$aVDB:(DE-Juel1)14995
000023923 9801_ $$aFullTexts
000023923 980__ $$aVDB
000023923 980__ $$aJUWEL
000023923 980__ $$aConvertedRecord
000023923 980__ $$ajournal
000023923 980__ $$aI:(DE-Juel1)IEK-5-20101013
000023923 980__ $$aI:(DE-Juel1)PGI-7-20110106
000023923 980__ $$aUNRESTRICTED
000023923 980__ $$aFullTexts
000023923 981__ $$aI:(DE-Juel1)IMD-3-20101013
000023923 981__ $$aI:(DE-Juel1)IEK-5-20101013
000023923 981__ $$aI:(DE-Juel1)PGI-7-20110106