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Giant Hexagonal Superstructures in Diblock-Copolymer Membranes
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1Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Am Mühlenberg 1, 14476 Golm, Germany
2Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
3Institut für Physikalische Chemie, Universität Hamburg, Bundesstrasse 45, 20145 Hamburg, Germany

4Institut für Festkörperforschung, Forschungszentrum Jülich, D-52425 Jülich, Germany
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We have observed polymersomes of high genus with their vesicle wall organized on the micrometer
scale either in a double bilayer connected by a lattice of passages or a tubular network with hexagonal
symmetry. Experimentally found shape classes are identified within a theoretical phase diagram based
on the bending energy of the polymer membrane. Pronounced morphological changes could be induced
and controlled by temperature.
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FIG. 1. High genus polymersome in glucose solution. The top
view (a) shows a phase contrast micrograph of a typical
hexagonal lattice of passages in a double bilayer vesicle surface.
The space between the membranes is filled with sucrose solu-
tion inducing a dark contrast. The passages between the core
volume and the outside of the vesicle appear in light contrast
due to the continous space filled with glucose solution.
Topologically, the vesicle is single connected with a large
number of handles. Note the two larger passages forming
sevenfold and eightfold coordination defects together with a
fivefold coordinated passage. The cross section (b) of the same
(with genus g � 0), the bending and stretching elastic
moduli of the polymer membrane were found to be � �

vesicle shows nearly circular tubes (dark contrast) forming the
double bilayer surface. The scale bar corresponds to 10 �m.
Controlled structuring of materials on all length scales
is required to tune their specific chemical and physical
properties. In this respect, the complex molecular orga-
nization of block copolymer melts has been the focus of
intense efforts over the last two decades [1]. Adding
solvent to amphiphilic block copolymers melts produces
an even richer zoo of marvelous morphologies on a supra-
molecular scale of 10 to 100 nm [2,3]. Finally, advances
are being made to extend structuring into the micrometer
domain [4,5]. Recently, giant bilayer vesicles with a
typical size of 10 �m made of a homogenous diblock-
copolymer membrane, so-called polymersomes, could
be obtained in aqueous solution [6]. In this Letter, we
report on the remarkable property of polybutadiene
(32)-b-polyethylenoxide (20) (PB-PEO) molecules [7] to
self-assemble into giant vesicles with a wall formed
either by a double bilayer, which is connected by a lattice
of passages, or a tubular network with hexagonal sym-
metry. The passages form the dual lattice of the hexagonal
tubular network. In Fig. 1, we show an example of the
generic morphology. We identify the bending elastic en-
ergy of the polymer membrane as the underlying mecha-
nism of the observed microstructure formation, where the
occurrence of curved interfaces is not directly linked to
the nanoscale molecular architecture and alignment.

Lipid-bilayer vesicles with a small genus g, i.e., number
of handles, have been investigated before for g � 1 [8,9]
and g � 2; 4 [10,11], where for g > 1 conformal diffusion
in vesicle shape space is observed [10,11]. In contrast, the
vesicles we consider here have a high-genus topology,
with a genus on the order of g ’ 100 or even larger. We
are not interested in global vesicle shapes [12,13], but
rather want to characterize and model the local mem-
brane shape on the scale of a typical structural unit.

The viscoelastic properties of a PB-PEO bilayer mem-
brane have already been investigated in Ref. [14]. Using
micropipette aspiration of giant quasispherical vesicles
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42kBT and K � 470 dyn=cm, respectively. These values
fall in the range common to lipid membranes. These
findings parallel an earlier study in aqueous solution of
the very similar diblock-copolymer polyethylethylene
(37)-b-polyethylene oxide (40) [6]. Further, rheological
experiments show the PB-PEO membrane to be fluid [14].
However, the membrane viscosity is increased almost
1000-fold as compared to typical lipid membranes.
Nevertheless, at room temperature one is favorably above
the glass temperature of the short-chain polybutadiene
used in this study. Thus, as in the case of lipid mem-
branes, we may model the block copolymer membrane as
a fluid elastic sheet allowing bending deformations, but
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essentially no area dilatation due to the high stretching
elastic modulus.

Vesicles are swollen in sucrose solution and incubated
in glucose solution of matched osmolarity (100 mMol) in
order to adjust vesicle density in the sample and to
enhance contrast for observation under a phase contrast
microscope (Zeiss Axiovert 135, 40� Ph2). We note that
high-genus structures were already present before addi-
tion of glucose solution. Typically, samples were moni-
tored within a few days after preparation. Occasionally,
we observed samples several weeks later and could not
find a significant difference in appearance. Samples were
examined in a temperature controlled ( � 0:1 �C) micro-
chamber which was tightly sealed to avoid evaporation
and deflation of vesicles. Appropriate vesicles exhibiting a
microstructured membrane were selected for observation
and monitored for several hours at various temperatures.
We examined more than 20 vesicles in detail. Hundreds of
additional high-genus structures were seen but not moni-
tored over time. Often these polymer structures were
clumped together or exhibited an unresolvable topology
not suitable for quantitative analysis. We found a wide
distribution of vesicle genus with predominantly spheri-
cal topology. Only a small number of well-defined high-
genus vesicles per chamber could be found. However, the
structures observed were always present and proved ro-
bust against variations in preparation conditions. In fact,
we could swell high-genus vesicles in NaCl solutions
(1 m Mol, 100 m Mol) as well.

Our theoretical analysis of the local membrane shapes
of these high-genus polymersomes is based on the curva-
ture energy of doubly periodic membranes with the con-
straints of fixed volume V and membrane area S. The
walls of the polymersomes, which are formed of a double
bilayer connected by passages, can be well approximated
by doubly periodic surfaces when the distance between
the bilayers is small compared to the size of the polymer-
somes. We study a lattice of passages of hexagonal sym-
metry, since this is the local symmetry most often
observed experimentally. For simplicity, we ignore the
existence of lattice defects, in particular, those which are
induced by the spherical topology of the polymersome
shapes, see Fig. 1. Membrane shapes with passages, which
are symmetric with respect to the midplane between the
two bilayers, can be parametrized by [15,16]
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appear in the expansion (1) because we assume the full
symmetry of the hexagonal lattice. The periodic bound-
ary conditions account for the fact that the polymersomes
are closed, so that there are no free edges.
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The elastic properties of diblock-copolymer bilayers
are described, as for lipid bilayers, by the curvature
energy [17],

H �
�
2

Z
dS�C1 � C2 � 2C0�

2; (2)

where the integral extends over the whole membrane area.
C1, C2 are the local principal curvatures at each point of
the membrane. The local membrane shape of polymer-
somes indicates that the diblock bilayer must have
nonzero spontaneous curvature C0. The spontaneous cur-
vature is induced by the different sugar solutions on the
two sides of the polymer membrane [18]. The two sugar
species are likely to interact in a different way with the
PEO chains of the respective diblock copolymer, e.g., via
competition for hydration. A second contribution to the
spontaneous curvature arises from the different number
of polymer molecules in the two sheets of the bilayer,
which typically occurs during the formation process. As a
consequence, absolute temperature is not significant to
vesicle shapes.What is important are changes in tempera-
ture which induce a shift in spontaneous curvature. Our
experimental evidence suggest that the bilayers compos-
ing a polymersome do not break, and the topology of the
membrane does not change; a Gaussian-curvature term
C1C2 is therefore omitted from Eq. (2). A related prob-
lem, with vanishing spontaneous curvature C0 � 0, var-
iable topology, square symmetry, and fixed lattice
constant, has been considered theoretically in Ref. [19].

We examine the stability of local membrane shape as a
function of dimensionless variables v � V=S3=2 and c0 �
C0S1=2. Here, volume V and membrane area S are calcu-
lated for the unit cell of the hexagonal lattice. We have
found several families of shapes: small and large pas-
sages, budded vertices, tubes, and spindles, which are
stable for different values of v and c0. Experimental
membrane morphologies can be matched nicely with their
respective corresponding theoretical counterparts, as
demonstrated in Fig. 2. The regions of stability of these
phases can be seen in the phase diagram of Fig. 3.

The most common shapes are membranes connected by
circular passages. For v & 0:10, shapes of two families of
circular passages exist for the same values of v and c0
over some range of spontaneous curvature. The shapes of
these two families differ mainly by the size of the pas-
sage, where one family—see Figs. 2(a) and 2(b) —is
characterized by a small ratio of passage radius to lattice
constant, while the other—see Figs. 2(c) and 2(d)—is
characterized by a large ratio. The ‘‘small-passage’’
shapes are most stable for low values of c0, while the
‘‘large-passage’’ shapes are the most stable for larger
values of c0. The transition from small to large passages
with increasing c0 is discontinuous for small reduced
volume v, and ends at a critical point. The transition is
accompanied by the change of the lattice constant L of
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FIG. 3. Theoretical phase diagram, calculated for N � 15
Fourier amplitudes in Eq. (1). The full lines indicate phase
transitions, where the energies of two different families of
shapes are equal. All transitions are first-order and end with
criticial points ( � ). The dashed lines are locations of minimal
energy when the volume constraint is released. The shaded
areas show the regions where shapes of two different families
are (meta)stable.

FIG. 2. Comparison of experimental and theoretical shapes.
The scale bars correspond to 10 �m. Experimental images
with (a) small passages, (c) large passages, (e) budded vertices.
Theoretical shapes resulting from minimization of the func-
tional (2) with N � 15 in Eq. (1) for (b) v � V=S3=2 � 0:098
and c0 � C0S

1=2 � 0:3 (small passages), (d) v � 0:076 and
c0 � 2:7 (large passages), (f) v � 0:065 and c0 � 4:4 (budded
vertices), (g) v � 0:053 and c0 � 5:7, v � 0:043 and c0 � 5:9
(spindles). The lattice of touching spheres (e) is deformed by
strong thermal fluctuations.
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the order of a few percent. The region in the phase
diagram, in which solutions for both small and large
passages exist, is marked by a shaded area in Fig. 3.
Shapes, which resemble spheres located on the vertices
of the hexagonal lattice connected by small necks, are
stable for a range of reduced volumes 0:051 & v & 0:071
and for c0 * 3:9, as shown in Figs. 2(e) and 2(f). For
spontaneous curvature c0 �

�������
8�

p
and reduced volume

v � 1=�6
�������
2�

p
�, these shapes degenerate into touching

spheres. The apparent lack of symmetry in the experi-
mental Fig. 2(e) compared to its theoretical counterpart
238302-3
Fig. 2(f), is likely caused by a small energy on the order of
kBT required to deform the lattice of touching spheres.
For smaller values of v, the spheres stretch out towards
their nearest neighbors. With increasing spontaneous cur-
vature, the ‘‘large-passage’’ phase transforms smoothly
into these ‘‘budded vertices.’’ Only very close to the value
of v for touching spheres does the transition become
discontinuous. The line of discontinuous transitions ends
at a ‘‘lower critical point’’ when v is decreased.

Further decreasing of v leads to yet another family of
shapes, which are composed of a spindlelike object lo-
cated along the edges of a hexagonal lattice and con-
nected at the vertices as shown in Fig. 2(g). The
transformation of passages into spindles with increasing
c0, occurs via shapes, which are narrow tubes along the
edges of the hexagonal network. There is a line of first-
order transitions for 0:047 & v & 0:055, which ends
again in a lower critical point. The boundaries of the
metastable regions are not shown in Fig. 3 in this case.
For v & 0:047, the family of large passages merges
smoothly with the family of spindles. Unfortunately, we
have not been able to observe regular patterns composed
of the spindles experimentally; however, locally such
shapes appear in polymersomes. The regions of stability
for budded vertices and spindles have upper limits in
reduced volume resulting from geometric constraints.
Larger values of v would lead to self-intersecting shapes
in these families, which cannot be described by our
ansatz (1).

In Fig. 2, we show only vesicles with a global prolate
shape, although other more complicated shapes [13], e.g.,
starfish vesicles, have been found as well. In addition, we
observed various shape transitions, e.g., budding of the
238302-3



FIG. 4. Temperature induced transformation from (a) ‘‘large
passages’’ to (b) ‘‘budded vertices.’’ After a quench by 4 K, the
vesicle [(a) T � 45:7 ! 41:7 C, t � 0min] first shows budding
of its vertices [(b) 41.7 C, t � 20min] before it relaxes back
to its original large-passages shape (not shown; 41.7 C,
t � 80min). The scale bars correspond to 10 �m.
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microstructured vesicles. Transitions between distinct
classes could be induced by temperature. Decreasing
temperature progressively leads to double membrane
structures with higher curvatures, see Fig. 4. Because of
the high viscosity of the polymer membrane and the
resulting slow vesicle fluctuations and membrane relax-
ation, we could not decide whether the transition between
the ‘‘passage’’ and the ‘‘budded vertices’’ class is of first or
second order. Generally, transitions appeared to be con-
tinuous. The vesicle shown in Fig. 4(b) exhibited a pre-
dominantly triangular symmetry in the budded-vertex
state. In some cases, we also observed regions with
square symmetry on the scale of several unit cells.
These symmetry classes are probably low lying meta-
stable states rather than stable membrane shapes, since
the vesicle relaxed back to its original shape [Fig. 4(a)] at
constant temperature within about 1 h. Remarkably, the
same cycle of shape changes could be induced several
times upon further lowering the temperature in jumps of a
few degrees. After each jump, a transformation to the
budded-vertex state is followed by a relaxation back to
the large-passage state. At higher temperatures, enhanced
membrane fluctuations are found, which indicate a de-
crease in membrane viscosity, as might be expected.

To conclude, we have shown that diblock-copolymer
membranes can exhibit regular superstructures on a mi-
crometer scale. We found a pronounced morphological
response to changes in spontaneous curvature, which
allows a precise control of the shape of the pores in the
double-bilayer membrane. In addition to temperature,
there are other natural control parameters of interfacial
shape, such as electrolyte concentration and pH as well as
the degree of hydrogen bonding, which will be effective
via their influence on PEO chain conformations in solu-
tion. We could control the morphology of polymersomes
with fixed topology. In contrast, the detailed molecular
mechanisms of high-genus vesicle formation and
the distribution of genus remains to be understood.
Structuring polymeric interfaces on micrometer length
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scales may prove useful for applications requiring
materials with giant pores. In a biomimetic context, we
note the striking resemblance of the large-passage mem-
brane structure Figs. 2(c) and 2(d) to the tests of certain
sea urchins [20], which use syncytial membranes to direct
growth of their mineral skeleton. Albeit this biological
controlled inorganic morphosynthesis [21] is far from
being completely understood, it seems promising to em-
ploy superstructures of diblock-copolymer membranes in
order to cast desired mineral materials into micron-sized
geometrical shapes.
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