000024555 001__ 24555
000024555 005__ 20180210143433.0
000024555 0247_ $$2DOI$$a10.1016/S0010-4655(02)00308-9
000024555 0247_ $$2WOS$$aWOS:000177824600081
000024555 037__ $$aPreJuSER-24555
000024555 041__ $$aeng
000024555 082__ $$a004
000024555 084__ $$2WoS$$aComputer Science, Interdisciplinary Applications
000024555 084__ $$2WoS$$aPhysics, Mathematical
000024555 1001_ $$0P:(DE-Juel1)132274$$aSutmann, G.$$b0$$uFZJ
000024555 245__ $$aCorrection of finite size effects in molecular dynamics applied to the friction coefficient of a Brownian particle
000024555 260__ $$aAmsterdam$$bNorth Holland Publ. Co.$$c2002
000024555 300__ $$a374 - 377
000024555 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000024555 3367_ $$2DataCite$$aOutput Types/Journal article
000024555 3367_ $$00$$2EndNote$$aJournal Article
000024555 3367_ $$2BibTeX$$aARTICLE
000024555 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000024555 3367_ $$2DRIVER$$aarticle
000024555 440_0 $$01439$$aComputer Physics Communications$$v147$$x0010-4655
000024555 500__ $$aRecord converted from VDB: 12.11.2012
000024555 520__ $$aThe friction coefficient of a fixed Brownian particle is calculated via an integration of the force-autocorrelation function obtained from molecular dynamics simulation. Due to finite size effects this correlation function decays exponentially to zero, which should not arise in the thermodynamic limit. An efficient way is proposed to overcome the limitation of a finite system and it is demonstrated that it is possible to reach a plateau value in the correlation function integral, which is very close to the friction coefficient determined by different methods. (C) 2002 Elsevier Science B.V. All rights reserved.
000024555 536__ $$0G:(DE-Juel1)FUEK253$$2G:(DE-HGF)$$aMethoden und Systeme der Informationstechnik$$cI02$$x0
000024555 588__ $$aDataset connected to Web of Science
000024555 650_7 $$2WoSType$$aJ
000024555 65320 $$2Author$$amolecular dynamics
000024555 65320 $$2Author$$afinite size effects
000024555 65320 $$2Author$$afriction coefficient
000024555 65320 $$2Author$$astochastic thermostat
000024555 65320 $$2Author$$adistribution functions
000024555 7001_ $$0P:(DE-Juel1)132269$$aSteffen, B.$$b1$$uFZJ
000024555 773__ $$0PERI:(DE-600)1466511-6$$a10.1016/S0010-4655(02)00308-9$$gVol. 147, p. 374 - 377$$p374 - 377$$q147<374 - 377$$tComputer physics communications$$v147$$x0010-4655$$y2002
000024555 909CO $$ooai:juser.fz-juelich.de:24555$$pVDB
000024555 9131_ $$0G:(DE-Juel1)FUEK253$$bInformation$$kI02$$lInformationstechnologie mit nanoelektronischen Systemen$$vMethoden und Systeme der Informationstechnik$$x0
000024555 9141_ $$y2002
000024555 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000024555 9201_ $$0I:(DE-Juel1)VDB62$$d31.12.2007$$gZAM$$kZAM$$lZentralinstitut für Angewandte Mathematik$$x0
000024555 970__ $$aVDB:(DE-Juel1)15904
000024555 980__ $$aVDB
000024555 980__ $$aConvertedRecord
000024555 980__ $$ajournal
000024555 980__ $$aI:(DE-Juel1)JSC-20090406
000024555 980__ $$aUNRESTRICTED
000024555 981__ $$aI:(DE-Juel1)JSC-20090406