000024641 001__ 24641
000024641 005__ 20180210144204.0
000024641 0247_ $$2DOI$$a10.1016/S0039-6028(02)01684-9
000024641 0247_ $$2WOS$$aWOS:000176646200003
000024641 037__ $$aPreJuSER-24641
000024641 041__ $$aeng
000024641 082__ $$a540
000024641 084__ $$2WoS$$aChemistry, Physical
000024641 084__ $$2WoS$$aPhysics, Condensed Matter
000024641 1001_ $$0P:(DE-HGF)0$$aFilimonov, S. N.$$b0
000024641 245__ $$aInfluence of strain on binding energies of Si atoms at Ge(111) surfaces
000024641 260__ $$aAmsterdam$$bElsevier$$c2002
000024641 300__ $$aL335 - L340
000024641 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000024641 3367_ $$2DataCite$$aOutput Types/Journal article
000024641 3367_ $$00$$2EndNote$$aJournal Article
000024641 3367_ $$2BibTeX$$aARTICLE
000024641 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000024641 3367_ $$2DRIVER$$aarticle
000024641 440_0 $$05673$$aSurface Science$$v512$$x0039-6028
000024641 500__ $$aRecord converted from VDB: 12.11.2012
000024641 520__ $$aRearrangement of two-dimensional Ge and Si islands after coarsening on a laterally strain modulated Ge surface covered with a monolayer of Bi is studied by scanning tunneling microscopy. Spatial ordering of the islands with respect to the modulations of the strain field shows that the binding energy of Si atoms at strained Si islands is, unexpectedly, higher than at unstrained islands. This behavior is explained by a strong compressive stress of the surfactant layer, which favors an expansion of the underlying surface structures and therefore stabilizes the tensile strained Si islands. It is shown that a Si mass transport towards more strained Si islands can be also favored by an increased binding energy of Si adatoms to the less strained parts of the Ge surface. (C) 2002 Elsevier Science B.V. All rights reserved.
000024641 536__ $$0G:(DE-Juel1)FUEK253$$2G:(DE-HGF)$$aMethoden und Systeme der Informationstechnik$$cI02$$x0
000024641 588__ $$aDataset connected to Web of Science
000024641 650_7 $$2WoSType$$aJ
000024641 65320 $$2Author$$asurface stress
000024641 65320 $$2Author$$asurface diffusion
000024641 65320 $$2Author$$ascanning tunneling microscopy
000024641 65320 $$2Author$$aepitaxy
000024641 65320 $$2Author$$agermanium
000024641 65320 $$2Author$$asilicon
000024641 65320 $$2Author$$abismuth
000024641 65320 $$2Author$$asemiconductor-semiconductor thin film structures
000024641 7001_ $$0P:(DE-Juel1)VDB5601$$aVoigtländer, B.$$b1$$uFZJ
000024641 773__ $$0PERI:(DE-600)1479030-0$$a10.1016/S0039-6028(02)01684-9$$gVol. 512, p. L335 - L340$$pL335 - L340$$q512<L335 - L340$$tSurface science$$v512$$x0039-6028$$y2002
000024641 909CO $$ooai:juser.fz-juelich.de:24641$$pVDB
000024641 9131_ $$0G:(DE-Juel1)FUEK253$$bInformation$$kI02$$lInformationstechnologie mit nanoelektronischen Systemen$$vMethoden und Systeme der Informationstechnik$$x0
000024641 9141_ $$y2002
000024641 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000024641 9201_ $$0I:(DE-Juel1)VDB43$$d31.12.2006$$gISG$$kISG-3$$lInstitut für Grenzflächen und Vakuumtechnologien$$x0
000024641 970__ $$aVDB:(DE-Juel1)16024
000024641 980__ $$aVDB
000024641 980__ $$aConvertedRecord
000024641 980__ $$ajournal
000024641 980__ $$aI:(DE-Juel1)PGI-3-20110106
000024641 980__ $$aUNRESTRICTED
000024641 981__ $$aI:(DE-Juel1)PGI-3-20110106