
John von Neumann Institute for Computing

Parallel Programming Models,
Tools and Performance Analysis

Bernd Mohr, Michael Gerndt

published in

Quantum Simulations of Complex Many-Body Systems:
From Theory to Algorithms, Lecture Notes,
J. Grotendorst, D. Marx, A. Muramatsu (Eds.),
John von Neumann Institute for Computing, Jülich,
NIC Series, Vol. 10, ISBN 3-00-009057-6, pp. 507-520, 2002.

c© 2002 by John von Neumann Institute for Computing
Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted provided that the copies are not
made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise
requires prior specific permission by the publisher mentioned above.

http://www.fz-juelich.de/nic-series/volume10

Parallel Programming Models,
Tools and Performance Analysis

Bernd Mohr1 and Michael Gerndt2

1 John von Neumann Institute for Computing
Central Institute for Applied Mathematics

Research Centre Jülich, 52425 Jülich, Germany
E-mail: b.mohr@fz-juelich.de

2 Technische Universität München
Institut für Informatik, LRR
80290 München, Germany
E-mail: gerndt@in.tum.de

The major parallel programming models for scalable parallel architectures are the message
passing model and the shared memory model. This article outlines the main concepts of these
models as well as the industry standard programming interfaces MPI and OpenMP. To exploit
the potential performance of parallel computers, programs need to be carefully designed and
tuned. We will discuss design decisions for good performance as well as programming tools
that help the programmer in program tuning.

1 Introduction

Although the performance of sequential computers increases incredibly fast, it is insuffi-
cient for a large number of challenging applications. Applications requiring much more
performance are numerical simulations in industry and research as well as commercial
applications such as query processing, data mining, and multi-media applications. Ar-
chitectures offering high performance do not only exploit parallelism on a very fine grain
within a single processor but apply a medium to large number of processors concurrently to
a single application. High-end parallel computers deliver up to 30 Teraflop/s (10

12 floating
point operations per second) and are developed and exploited within the ASCI (Accelerated
Strategic Computing Initiative) program of the Department of Energy in the USA.

This article concentrates on programming numerical applications on distributed mem-
ory computers introduced in Sec. 1.1. Parallelization of those applications centers around
selecting a decomposition of the data domain onto the processors such that the workload
is well balanced and the communication between processors is reduced (Sec. 1.2)7.

The parallel implementation is then based on either the message passing or the shared
memory model (Sec. 2). The standard programming interface for the message passing
model is MPI (Message Passing Interface)14, 11, offering a complete set of communica-
tion routines (Sec. 2.1). OpenMP4, 13 is the standard for directive-based shared memory
programming and will be introduced in Sec. 2.2.

Since parallel programs exploit multiple threads of control, debugging is even more
complicated than for sequential programs. Sec. 3 outlines the main concepts of parallel
debuggers and presents TotalView15, the most widely available debugger for parallel pro-
grams.

507

Although the domain decomposition is key to good performance on parallel archi-
tectures, program efficiency also heavily depends on the implementation of the commu-
nication and synchronization required by the parallel algorithm and the implementation
techniques chosen for sequential kernels. Optimizing those aspects is very system depen-
dent and thus, an interactive tuning process consisting of measuring performance data and
applying optimizations follows the initial coding of the application. The tuning process
is supported by programming model specific performance analysis tools. Sec. 4 presents
basic performance analysis techniques and introduces the widely available performance
analysis tools VAMPIR16 (for MPI programs) and GuideView9 (for OpenMP).

1.1 Parallel Architectures

Parallel computers that scale beyond a small number of processors circumvent the main
memory bottleneck by distributing the memory among the processors. Current architec-
tures3 are composed of single-processor nodes with local memory or of multiprocessor
nodes where each node’s main memory is shared among its processors. The latter are
often called SMP (Symmetrical Multi Processor) nodes.

The most important characteristic of this distributed memory architecture is that access
to the local memory is faster than to remote memory. It is the challenge for the programmer
to assign data to the processors such that most of the data accessed during the computation
are already in the node’s local memory.

Three major classes of distributed memory computers can be distinguished:

No Remote Memory Access (NORMA) computers do not have any special hardware
support to access another node’s local memory. Processors obtain data from remote
memory only by exchanging messages between processes on the requesting and the
supplying node.

Remote Memory Access (RMA) computers allow to access remote memory via special-
ized operations implemented by hardware. The accessed memory location is not de-
termined via an address in a shared linear address space but via a tuple consisting of
the processor number and the local address in the target processor’s address space.

Cache-Coherent Non Uniform Memory Access (ccNUMA) computers do have a
shared physical address space. All memory locations can be accessed via usual load
and store operations. Access to a remote location results in a copy of the appropriate
cache line in the processor’s cache. Coherence algorithms ensure that multiple copies
of a cache line are kept coherent, i.e., the copies do have the same value.

While most of the early parallel computers were NORMA systems, today’s systems
are either RMA or ccNUMA computers. This is because remote memory access is a light-
weight communication protocol that is more efficient than standard message passing since
data copying and process synchronization are eliminated. In addition, ccNUMA systems
offer the abstraction of a shared linear address space resembling physically shared mem-
ory systems. This abstraction simplifies the task of program development but does not
necessarily facilitate program tuning.

Typical examples of the three classes are clusters of workstations (NORMA), CRAY
T3E (RMA), and SGI Origin 3000 (ccNUMA).

508

**00

**0

0
**

Figure 1. Structure of the matrix during Gaussian elimination.

1.2 Data Parallel Programming

Applications that scale to a large number of processors usually perform computations on
large data domains. For example, crash simulations are based on partial differential equa-
tions that are solved on a large finite element grid and molecular dynamics applications
simulate the behavior of a large number of particles. Other parallel applications apply lin-
ear algebra operations to large vectors and matrices. The elemental operations on each
object in the data domain can be executed in parallel by the available processors.

The scheduling of operations to processors is determined according to a selected do-
main decomposition8. Processors execute those operations that determine new values for
local elements (owner-computes rule). While processors execute an operation, they may
need values from other processors. The domain decomposition has thus to be chosen so
that the distribution of operations is balanced and the communication is minimized. The
third goal is to optimize single node computation, i.e., to be able to exploit the processor’s
pipelines and the processor’s caches efficiently.

A good example for the design decisions taken when selecting a domain decomposition
is Gaussian elimination2. The main structure of the matrix during the iterations of the
algorithm is outlined in Fig. 1.

The goal of this algorithm is to eliminate all entries in the matrix below the main
diagonal. It starts at the top diagonal element and subtracts multiples of the first row from
the second and subsequent rows to end up with zeros in the first column. This operation
is repeated for all the rows. In later stages of the algorithm the actual computations have
to be done on rectangular sections of decreasing size. If the main diagonal element of the
current row is zero, a pivot operation has to be performed. The subsequent row with the
maximum value in this column is selected and exchanged with the current row.

A possible distribution of the matrix is to decompose its columns into blocks, one
block for each processor. The elimination of the entries in the lower triangle can then be
performed in parallel where each processor computes new values for its columns only. The
main disadvantage of this distribution is that in later computations of the algorithms only a
subgroup of the processors is actually doing any useful work since the computed rectangle
is getting smaller.

509

To improve load balancing, a cyclic column distribution can be applied. The computa-
tions in each step of the algorithm executed by the processors differ only in one column.

In addition to load balancing also communication needs to be minimized. Communica-
tion occurs in this algorithm for broadcasting the current column to all the processors since
it is needed to compute the multiplication factor for the row. If the domain decomposition
is a row distribution, which eliminates the need to communicate the current column, the
current row needs to be broadcast to the other processors.

If we consider also the pivot operation, communication is necessary to select the best
row when a row-wise distribution is applied since the computation of the global maximum
in that column requires a comparison of all values.

Selecting the best domain decomposition is further complicated due to optimizing sin-
gle node performance. In this example, it is advantageous to apply BLAS3 operations for
the local computations. These operations make use of blocks of rows to improve cache uti-
lization. Blocks of rows can only be obtained if a block-cyclic distribution is applied, i.e.,
columns are not distributed individually but blocks of columns are cyclically distributed.

This discussion makes clear, that choosing a domain decomposition is a very compli-
cated step in program development. It requires deep knowledge of the algorithm’s data
access patterns as well as the ability to predict the resulting communication.

2 Programming Models

The two main programming models, message passing and shared memory, offer different
features for implementing applications parallelized by domain decomposition.

The message passing model is based on a set of processes with private data structures.
Processes communicate by exchanging messages with special send and receive operations.
The domain decomposition is implemented by developing a code describing the local com-
putations and local data structures of a single process. Thus, global arrays have to be split
up and only the local part has to be allocated in a process. This handling of global data
structures is called data distribution. Computations on the global arrays also have to be
transformed, e.g., by adapting the loop bounds, to ensure that only local array elements are
computed. Access to remote elements have to be implemented via explicit communication,
temporary variables have to be allocated, messages have to be constructed and transmitted
to the target process.

The shared memory model is based on a set of threads that are created when parallel
operations are executed. This type of computation is also called fork-join parallelism.
Threads share a global address space and thus access array elements via a global index.

The main parallel operations are parallel loops and parallel sections. Parallel loops
are executed by a set of threads also called a team. The iterations are distributed among
the threads according to a predefined strategy. This scheduling strategy implements the
chosen domain decomposition. Parallel sections are also executed by a team of threads
but the tasks assigned to the threads implement different operations. This feature can for
example be applied if domain decomposition itself does not generate enough parallelism
and whole operations can be executed in parallel since they access different data structures.

In the shared memory model, the distribution of data structures onto the node memories
is not enforced by decomposing global arrays into local arrays, but the global address
space is distributed onto the memories by the operating system. For example, the pages

510

of the virtual address space can be distributed cyclically or can be assigned at first touch.
The chosen domain decomposition thus has to take into account the granularity of the
distribution, i.e., the size of pages, as well as the system-dependent allocation strategy.

While the domain decomposition has to be hard-coded into the message passing pro-
gram, it can easily be changed in a shared memory program by selecting a different
scheduling strategy for parallel loops.

Another advantage of the shared memory model is that automatic and incremental par-
allelization is supported. While automatic parallelization leads to a first working parallel
program, its efficiency typically needs to be improved. The reason for this is that paral-
lelization techniques work on a loop-by-loop basis and do not globally optimize the parallel
code via a domain decomposition. In addition, dependence analysis, the prerequisite for
automatic parallelization, is limited to access patterns known at compile time.

In the shared memory model, a first parallel version is relatively easy to implement
and can be incrementally tuned. In the message passing model instead, the program can
be tested only after finishing the full implementation. Subsequent tuning by adapting the
domain decomposition is usually time consuming.

2.1 MPI

The Message Passing Interface (MPI)14, 11 was developed between 1993 and 1997. It in-
cludes routines for point-to-point communication, collective communication, one-sided
communication, and parallel IO. While the basic communication primitives have already
been defined since 1994 and implemented on almost all parallel computers, remote mem-
ory access and parallel IO routines are part of MPI 2.0 and are only available on few
machines.

2.1.1 MPI Basic Routines

MPI consists of more than 120 functions. But realistic programs can already be developed
based on no more than six functions:

MPI Init initializes the library. It has to be called at the beginning of a parallel operation
before any other MPI routines are executed.

MPI Finalize frees any resources used by the library and has to be called at the end of
the program.

MPI Comm size determines the number of processors executing the parallel program.
MPI Comm rank returns the unique process identifier.
MPI Send transfers a message to a target process. This operation is a blocking send

operation, i.e., it terminates when the message buffer can be reused either because
the message was copied to a system buffer by the library or because the message was
delivered to the target process.

MPI Recv receives a message. This routine terminates if a message was copied into the
receive buffer.

2.1.2 MPI Communicator

All communication routines depend on the concept of a communicator. A communicator
consists of a process group and a communication context. The processes in the process

511

group are numbered from zero to process count - 1. The process number returned by
MPI Comm rank is the identification in the process group of the communicator which is
passed as a parameter to this routine.

The communication context of the communicator is important in identifying messages.
Each message has an integer number called a tag which has to match a given selector in the
corresponding receive operation. The selector depends on the communicator and thus on
the communication context. It selects only messages with a fitting tag and having been sent
relative to the same communicator. This feature is very useful in building parallel libraries
since messages sent inside the library will not interfere with messages outside if a special
communicator is used in the library. The default communicator that includes all processes
of the application is MPI COMM WORLD.

2.1.3 MPI Collective Operations

Another important class of operations are collective operations. Collective operations are
executed by a process group identified via a communicator. All the processes in the group
have to perform the same operation. Typical examples for such operations are:

MPI Barrier synchronizes all processes. None of the processes can proceed beyond the
barrier until all the processes started execution of that routine.

MPI Bcast allows to distribute the same data from one process, the so-called root pro-
cess, to all other processes in the process group.

MPI Scatter also distributes data from a root process to a whole process group, but each
receiving process gets different data.

MPI Gather collects data from a group of processes at a root process.
MPI Reduce performs a global operation on the data of each process in the process

group. For example, the sum of all values of a distributed array can be computed
by first summing up all local values in each process and then summing up the local
sums to get a global sum. The latter step can be performed by the reduction operation
with the parameter MPI SUM. The result is delivered to a single target processor.

2.1.4 MPI IO

Data parallel applications make use of the IO subsystem to read and write big data sets.
These data sets result from replicated or distributed arrays. The reasons for IO are to read
input data, to pass information to other programs, e.g., for visualization, or to store the
state of the computation to be able to restart the computation in case of a system failure or
if the computation has to be split into multiple runs due to its resource requirements.

IO can be implemented in three ways:

1. Sequential IO

A single node is responsible to perform the IO. It gathers information from the other
nodes and writes it to disk or reads information from disk and scatters it to the ap-
propriate nodes. While the IO is sequential and thus need not be parallelized, the full
performance of the IO subsystem might not be utilized. Modern systems provide high
performance IO subsystems that are fast enough to support multiple IO requests from
different nodes in parallel.

512

2. Private IO

Each node accesses its own files. The big advantage of this implementation is that
no synchronization among the nodes is required and very high performance can be
obtained. The major disadvantage is that the user has to handle a large number of
files. For input the original data set has to be splitted according to the distribution of
the data structure and for output the process-specific files have to be merged into a
global file for postprocessing.

3. Parallel IO

In this implementation all the processes access the same file. They read and write
only those parts of the file with relevant data. The main advantages are that no indi-
vidual files need to be handled and that reasonable performance can be reached. The
disadvantage is that it is difficult to reach the same performance as with private IO.
The parallel IO interface of MPI provides flexible and high-level means to implement
applications with parallel IO.

Files accessed via MPI IO routines have to be opened and closed by collective opera-
tions. The open routine allows to specify hints to optimize the performance such as whether
the application might profit from combining small IO requests from different nodes, what
size is recommended for the combined request, and how many nodes should be engaged in
merging the requests.

The central concept in accessing the files is the view. A view is defined for each process
and specifies a sequence of data elements to be ignored and data elements to be read or
written by the process. When reading or writing a distributed array the local information
can be described easily as such a repeating pattern. The IO operations read and write
a number of data elements on the basis of the defined view, i.e., they access the local
information only. Since the views are defined via runtime routines prior to the access, the
information can be exploited in the library to optimize IO.

MPI IO provides blocking as well as nonblocking operations. In contrast to blocking
operations, the nonblocking ones only start IO and terminate immediately. If the program
depends on the successful completion of the IO it has to check it via a test function. Besides
the collective IO routines which allow to combine individual requests, also non-collective
routines are available to access shared files.

2.1.5 MPI Remote Memory Access

Remote memory access (RMA) operations (also called 1-sided communication) allow to
access the address space of other processes without participation of the other process. The
implementation of this concept can either be in hardware, such as in the CRAY T3E, or in
software via additional threads waiting for requests. The advantages of these operations
are that the protocol overhead is much lower than for normal send and receive operations
and that no polling or global communication is required for setting up communication.

In contrast to explicit message passing where synchronization happens implicitly, ac-
cesses via RMA operations need to be protected by explicit synchronization operations.

RMA communication in MPI is based on the window concept. Each process has to
execute a collective routine that defines a window, i.e., the part of its address space that can
be accessed by other processes.

513

The actual access is performed via put and get operations. The address is defined by the
target process number and the displacement relative to the starting address of the window
for that process.

MPI also provides special synchronization operations relative to a window. The
MPI Win fence operation synchronizes all processes that make some address ranges acces-
sible to other processes. It is a collective operation that ensures that all RMA operations
started before the fence operation terminate before the target process executes the fence
operation and that all RMA operations of a process executed after the fence operation are
executed after the target process executed the fence operation.

2.2 OpenMP

OpenMP4, 13 is a directive-based programming interface for the shared memory program-
ming model. It consists of a set of directives and runtime routines for Fortran 77 (published
1997), for Fortran 90 (2000), and a corresponding set of pragmas for C and C++ (1998).

Directives are special comments that are interpreted by the compiler. Directives have
the advantage that the code is still a sequential code that can be executed on sequential ma-
chines and thus no two versions, a sequential and a parallel version, need to be maintained.

Directives start and terminate parallel regions. When the master thread hits a parallel
region a team of threads is created or activated. The threads execute the code in parallel
and are synchronized at the beginning and the end of the computation. After the final
synchronization the master thread continues sequential execution after the parallel region.
The main directives are:

!$OMP PARALLEL DO specifies a loop that can be executed in parallel. The DO
loop’s iterations can be distributed in various ways including STATIC(CHUNK),
DYNAMIC(CHUNK), and GUIDED(CHUNK) among the set of threads.
STATIC(CHUNK) distribution means that the set of iterations are consecu-
tively distributed among the threads in blocks of CHUNK size (resulting in block
and cyclic distributions). DYNAMIC(CHUNK) distribution implies that iterations
are distributed in blocks of CHUNK size to threads on a first-come-first-served basis.
GUIDED (CHUNK) means that blocks of exponentially decreasing size are assigned
on a first-come-first-served basis. The size of the smallest block is determined by
CHUNK size.

!$OMP PARALLEL SECTIONS starts a set of sections that are executed in parallel by
a team of threads.

!$OMP PARALLEL introduces a code region that is executed redundantly by the
threads. It has to be used very carefully since assignments to global variables will
lead to conflicts among the threads and possibly to nondeterministic behavior.

!$OMP DO is a work sharing construct and may be used within a parallel region. All
the threads executing the parallel region have to cooperate in the execution of the
parallel loop. There is no implicit synchronization at the beginning of the loop but a
synchronization at the end. After the final synchronization all threads continue after
the loop in the replicated execution of the program code.
The main advantage of this approach is that the overhead for starting up the threads is
eliminated. The team of threads exists during the execution of the parallel region and
need not be built before each parallel loop.

514

!$OMP SECTIONS is also a work sharing construct that allows the current team of
threads executing the surrounding parallel region to cooperate in the execution of
the parallel sections.

Program data can either be shared or private. While threads do have their own copy of
private data, only one copy exists of shared data. This copy can be accessed by all threads.
To ensure program correctness, OpenMP provides special synchronization constructs. The
main constructs are barrier synchronization enforcing that all threads have reached this
synchronization operation before execution continues and critical sections. Critical sec-
tions ensure that only a single thread can enter the section and thus, data accesses in such a
section are protected from race conditions. For example, a common situation for a critical
section is the accumulation of values. Since an accumulation consists of a read and a write
operation unexpected results can occur if both operations are not surrounded by a critical
section.

3 Parallel Debugging

Debugging parallel programs is more difficult than debugging sequential programs not only
since multiple processes or threads need to be taken into account but also because program
behavior might not be deterministic and might not be reproducible. These problems are not
solved by current state-of-the-art commercial parallel debuggers. They deal only with the
first problem by providing menus, displays, and commands that allow to inspect individual
processes and execute commands on individual or all processes.

The widely used debugger is TotalView from Etnus Inc15. It provides breakpoint defini-
tion, single stepping, and variable inspection via an interactive interface. The programmer
can execute those operations for individual processes and groups of processes. TotalView
also provides some means to summarize information such that equal information from
multiple processes is combined into a single information and not repeated redundantly. It
also supports MPI and OpenMP programs on many platforms.

4 Parallel Performance Analysis

Performance analysis is an iterative subtask during program development. The goal is to
identify program regions that do not perform well. Performance analysis is structured into
four phases:

1. Measurement

Performance analysis is done based on information on runtime events gathered during
program execution. The basic events are, for example, cache misses, termination of a
floating point operation, start and stop of a subroutine or message passing operation.
The information on individual events can be summarized during program execution
or individual trace records can be collected for each event.

Summary information has the advantage to be of moderate size while trace informa-
tion tends to be very large. The disadvantage is that it is not fine grained; the behavior
of individual instances of subroutines can for example not be investigated since all the
information has been summed up.

515

2. Analysis

During analysis the collected runtime data are inspected to detect performance prob-
lems. Performance problems are based on performance properties, such as the exis-
tence of message passing in a program region, which have a condition for identifying
it and a severity function that specifies its importance for program performance.

Current tools support the user in checking the conditions and the severity by visualiz-
ing program behavior. Future tools might be able to automatically detect performance
properties based on a specification of possible properties. During analysis the pro-
grammer applies a threshold. Only performance properties whose severity exceeds
this threshold are considered to be performance problems.

3. Ranking

During program analysis the severest performance problems need to be identified.
This means that the problems need to be ranked according to the severity. The most
severe problem is called the program bottleneck. This is the problem the programmer
tries to resolve by applying appropriate program transformations.

4. Refinement

The performance problems detected in the previous phases might not be precise
enough to allow the user to start optimization. At the beginning of performance anal-
ysis, summary data can be used to identify critical regions. The summary data might
not be sufficient to identify why, for example, a region has high message passing
overhead. The reason, e.g., very big messages or load imbalance, can be identified
only with more detailed information. Therefore the performance problem should be
refined into hypotheses about the real reason and additional information be collected
in the next performance analysis cycle.

Current techniques for performance data collection are profiling and tracing. Profiling
collects summary data only. This can be done via sampling. The program is regularly
interrupted, e.g., every 10 ms, and the information is added up for the source code location
which was executed in this moment. For example, the UNIX profiling tool prof applies this
technique to determine the fraction of the execution time spent in individual subroutines.

A more precise profiling technique is based on instrumentation, i.e., special calls to a
monitoring library are inserted into the program. This can either be done in the source
code by the compiler or specialized tools, or can be done in the object code. While the
first approach allows to instrument more types of regions, for example, loops and vector
statements, the latter allows to measure data for programs where no source code is avail-
able. The monitoring library collects the information and adds it to special counters for the
specific region.

Tracing is a technique that collects information for each event. This results, for exam-
ple, in very detailed information for each instance of a subroutine and for each message
sent to another process. The information is stored in specialized trace records for each
event type. For example, for each start of a send operation, the time stamp, the message
size and the target process can be recorded, while for the end of the operation, the time
stamp and bandwidth are stored.

516

The trace records are stored in the memory of each process and are written to a trace
file either when the buffer is filled up or when the program terminates. The individual trace
files of the processes are merged together into one trace file ordered according to the time
stamps of the events.

The following sections describe two widely available performance analysis tools for
MPI programs (VAMPIR) and OpenMP applications (GuideView).

4.1 VAMPIR

VAMPIR (Visualization and Analysis of MPI Resources) is an event trace analysis tool12, 16

initially developed by the Central Institute for Applied Mathematics of the Research Centre
Jülich and now is commercially distributed by the German company PALLAS. VAMPIR
has three components:

• The VAMPIR tool itself is a graphical event trace browser implemented for the X11
Window system using the Motif toolkit. It is available for all major UNIX platforms.

• The VAMPIR runtime library (VampirTrace) provides an API for collecting, buffer-
ing, and generating event traces as well as a set of wrapper routines for MPI and
shmem communication routines which record message traffic in the event trace.

• In order to observe functions or subroutines in the user program, their entry and exit
has to be instrumented by inserting calls to the VAMPIR runtime library. Observ-
ing message passing functions is handled by linking the program with the VAMPIR
wrapper function library.

VAMPIR comes with a source instrumenter for ANSI Fortran 77. Programs written
in other programming languages (e.g., C or C++) have to be instrumented manually.

During the execution of the instrumented user program, the VAMPIR runtime library
records entry and exits to instrumented user and message passing functions and the send-
ing and receiving of messages. For each message, its tag, communicator, and length is
recorded. Through the use of a configuration file, it is possible to switch the runtime
observation of specific functions on and off. This way, the program doesn’t have to be
re-instrumented and re-compiled for every change in the instrumentation.

Large parallel programs consist of dozens or even hundreds of functions. To ease the
analysis of such complex programs, VAMPIR arranges the functions into groups, e.g.,
user functions, MPI routines, I/O routines, and so on. The user can control/change the
assignment of functions to groups and can also define new groups.

VAMPIR provides a wide variety of graphical displays to analyze the recorded event
traces:

• The dynamic behavior of the program can be analyzed by timeline diagrams for either
the whole program or a selected set of nodes. By default, the displays show the whole
event trace, but the user can zoom-in to any arbitrary region of the trace. Also, the
user can change the display style of the lines representing messages based on their
tag/communicator or the length. This way, message traffic of different modules or
libraries can easily be visually separated.

517

• The parallelism display shows the number of nodes in each function group over time.
This allows to easily locate specific parts of the program, e.g., parts with heavy mes-
sage traffic or IO.

• VAMPIR also provides a large number of statistical displays. It calculates how often
each function or group of functions was called and the time spent in them. Message
statistics show the number of messages sent, and the minimum, maximum, sum, and
average length or transfer rate between any two nodes. The statistics can be displayed
as barcharts, histograms, or textual tables.

A very useful feature of VAMPIR is that the statistic displays can be linked to the time-
line diagrams. By this, statistics can be calculated for any arbitrary, user selectable
part of the program execution.

• If the instrumenter/runtime library provides the necessary information in the event
trace header, the information provided by VAMPIR can be related back to the source
code. VAMPIR provides a source code and a call graph display to show selected
functions or the location of the send and the receive of a selected message.

In summary, VAMPIR is a very powerful and highly configurable event trace browser.
It displays trace files in a variety of graphical views, and provides flexible filter and statis-
tical operations that condense the displayed information to a manageable amount. Rapid
zooming and instantaneous redraw allow to identify and focus on the time interval of in-
terest.

4.2 GuideView

GuideView9 is the integrated profiling performance analysis component of the OpenMP
Compilation Environment KAP/Pro of KAI. It can be used to look for typical OpenMP
performance problems like load imbalance, false sharing, or excessive synchronization.

The necessary instrumentation for performance data collection is automatically in-
serted on user request by the Guide OpenMP compiler. During program execution, the
Guide runtime system collects execution statistics for each OpenMP construct in each
thread. Execution time is measured and categorized into user code execution in sequential
and parallel mode, sequential and parallel overhead, time spent in lock functions and bar-
riers, as well as load imbalance at barriers. Afterwards, the collected performance data can
be analyzed with the GuideView tool. It provides performance visualizations for the whole
program, on a per thread basis, and on a per OpenMP region basis.

In addition, performance data files from different program runs can be loaded and ana-
lyzed simultaneously. This allows to compare the program performance based on different
input datasets and/or thread numbers.

5 Summary

This article gave an overview of parallel programming models as well as programming
tools. Parallel programming will always be a challenge for programmers. Higher-level
programming models and appropriate programming tools only facilitate the process but do
not make it a simple task.

518

While programming in MPI offers the greatest potential performance, shared memory
programming with OpenMP is much more comfortable due to the global style of the re-
sulting program. The sequential control flow among the parallel loops and regions matches
much better with the sequential programming model all the programmers are trained for.

Although program tools were developed over years, the current situation seems not
to be very satisfying. Program debugging is done per thread, a technique that does not
scale to larger numbers of processors. Performance analysis tools do also suffer scalability
limitations and, in addition, the tools are complicated to use. The programmers have to
be experts for performance analysis to understand potential performance problems, their
proof conditions, and their severity. In addition they have to be experts for powerful but
also complex user interfaces.

Future research in this area has to try to automate performance analysis tools, such that
frequently occurring performance problems can be identified automatically. It is the goal of
the IST working group APART on Automatic Performance Analysis: Resources and Tools
to investigate base technologies for future more intelligent tools1. An important result of
this work is a collection of performance problems for parallel programs that have been
formalized with the ASL, the APART Specification Language6. This approach will lead to
a formal representation of the knowledge applied in the manually executed performance
analysis process and thus will make this knowledge accessible for automatic processing.
First automatic tools are already available: ParaDyn10 from the University of Wisconsin-
Madison, Kappa-PI5 from the Universitat Autonoma de Barcelona, and EXPERT17, 18 from
the Research Centre Jülich.

A second important trend that will effect parallel programming in the future is the move
towards clustered shared memory systems. Clearly, a hybrid programming approach will
be applied on those systems for best performance, combining message passing between
the individual SMP nodes and shared memory programming in a node. This programming
model will lead to even more complex programs and program development tools have to
be enhanced to be able to help the user in developing these codes.

References

1. APART: IST Working Group on Automatic Performance Analysis Resources and
Tools, http://www.fz-juelich.de/apart/, 2001.

2. D. P. Bertsekas, J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical
Methods, Prentice-Hall, ISBN 0-13-648759-9, 1989.

3. D. E. Culler, J. P. Singh, A. Gupta, Parallel Computer Architecture - A Hard-
ware/Software Approach, Morgan Kaufmann Publishers, ISBN 1-55860-343-3, 1999.

4. L. Dagum, R. Menon, OpenMP: An Industry-Standard API for Shared-memory Pro-
gramming, IEEE Computational Science & Engineering, Vol. 5, No. 1, 46–55, 1998.

5. A. Espinosa, Automatic Performance Analysis of Parallel Programs, PhD thesis, Uni-
versitat Autonoma de Barcelona, 2000.

6. Th. Fahringer, M. Gerndt, B. Mohr, F. Wolf, G. Riley, J. Träff, Knowledge Specifica-
tion for Automatic Performance Analysis, APART Technical Report, Research Centre
Juelich FZJ-ZAM-IB-2001-08, 2001.

7. I. Foster, Designing and Building Parallel Programs, Addison Wesley, ISBN 0-201-
57594-9, 1994.

519

8. G. Fox, Domain Decomposition in Distributed and Shared Memory Environments, In-
ternational Conference on Supercomputing June 8-12, 1987, Athens, Greece, Lecture
Notes in Computer Science 297, edited by C. Polychronopoulos, 1987.

9. KAI: GuideView, http://www.kai.com/parallel/openmp.html, 2001.
10. B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Hollingsworth, R. B. Irvine,

K. L. Karavanic, K. Kunchithapadam, and T. Newhall, The Paradyn Parallel Perfor-
mance Measurement Tool, IEEE Computer, Vol. 28, No. 11, 37–46, 1995.

11. MPI Forum: Message Passing Interface, http://www.mpi-forum.org, 2001.
12. W. E. Nagel, A. Arnold, M. Weber, H.C. Hoppe, K. Solchenbach, VAMPIR: Visual-

ization and Analysis of MPI Resources, Supercomputer 63, Vol. 12, No. 1, 69–80,
1996.

13. OpenMP Forum: OpenMP Standard, http://www.openmp.org, 2001.
14. M. Snir, St. Otto, St. Huss-Lederman, D. Walker, J. Dongarra, MPI - The Complete

Reference, MIT Press, ISBN 0-262-69216-3, 1998.
15. Etnus Inc.: Totalview, http://www.etnus.com/Products/Totalview/,

2001.
16. Pallas GmbH: VAMPIR, http://www.pallas.de/pages/vampir.htm,

2001.
17. F. Wolf, B. Mohr, Automatic Performance Analysis of MPI Applications Based on

Event Traces, In Proc. of the European Conference on Parallel Computing (Euro-
Par), 123–132, Munich (Germany), 2000.

18. F. Wolf, B. Mohr, Automatic Performance Analysis of SMP Cluster Applications,
Technical Report, Research Centre Juelich FZJ-ZAM-IB-2001-05, 2001.

520

