000002482 001__ 2482
000002482 005__ 20230426083005.0
000002482 0247_ $$2DOI$$a10.1103/PhysRevB.78.214416
000002482 0247_ $$2WOS$$aWOS:000262244400061
000002482 0247_ $$2Handle$$a2128/11071
000002482 037__ $$aPreJuSER-2482
000002482 041__ $$aeng
000002482 082__ $$a530
000002482 084__ $$2WoS$$aPhysics, Condensed Matter
000002482 1001_ $$0P:(DE-HGF)0$$aLazo, C.$$b0
000002482 245__ $$aRole of tip size, orientation, and structural relaxations in first principles studies of magnetic exchange force microscopy and spin polarized scanning tunneling microscopy
000002482 260__ $$aCollege Park, Md.$$bAPS$$c2008
000002482 300__ $$a21
000002482 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000002482 3367_ $$2DataCite$$aOutput Types/Journal article
000002482 3367_ $$00$$2EndNote$$aJournal Article
000002482 3367_ $$2BibTeX$$aARTICLE
000002482 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000002482 3367_ $$2DRIVER$$aarticle
000002482 440_0 $$04919$$aPhysical Review B$$v78$$x1098-0121
000002482 500__ $$aIt is our pleasure to thank S. Blugel, Y. Mokrousov, P. Ferriani, A. Schwarz, U. Kaiser, R. Schmidt, and R. Wiesendanger for many insightful discussions. Computations were performed at the Hamburg University of Technology, the Norddeutscher Verbund fur Hoch-und Hochstleistungsrechnen (HLRN), and the Forschungszentrum Julich (JUMP). We acknowledge financial support from the DFG (Grants No. HO 2237/3-1 and No. HE 3292/4-1). S. H. thanks the Stifterverband fur die Deutsche Wissenschaft and the Interdisciplinary Nanoscience Center Hamburg for financial support.
000002482 520__ $$aUsing first-principles calculations based on density-functional theory, we investigated the exchange interaction between a magnetic tip and a magnetic sample which is detected in magnetic exchange force microscopy (MExFM) and also occurs in spin-polarized scanning tunneling microscopy (SP-STM) experiments. As a model tip-sample system, we chose Fe tips and one monolayer Fe on W(001) which exhibits a checkerboard antiferromagnetic structure and has been previously studied with both SP-STM and MExFM. We calculated the exchange forces and energies as a function of tip-sample distance using different tip models ranging from single Fe atoms to Fe pyramids consisting of up to fourteen atoms. We find that modeling the tip by a single Fe atom leads to qualitatively different tip-sample interactions than using clusters consisting of several atoms. Increasing the cluster size changes the calculated forces, quantitatively enhancing the detectable exchange forces. Rotating the tip with respect to the surface unit cell has only a small influence on the tip-sample forces. Interestingly, the exchange forces on the tip atoms in the nearest and next-nearest layers from the apex atom are non-negligible and can be opposite to that on the apex atom for a small tip. In addition, the apex atom interacts not only with the surface atoms underneath but also with nearest neighbors in the surface. We find that structural relaxations of tip and sample due to their interaction depend sensitively on the magnetic alignment of the two systems. As a result the onset of significant exchange forces is shifted toward larger tip-sample separations which facilitates their measurement in MExFM. At small tip-sample separations, structural relaxations of tip apex and surface atoms can either enhance or reduce the magnetic contrast measured in SP-STM.
000002482 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000002482 542__ $$2Crossref$$i2008-12-11$$uhttp://link.aps.org/licenses/aps-default-license
000002482 588__ $$aDataset connected to Web of Science
000002482 65320 $$2Author$$aab initio calculations
000002482 65320 $$2Author$$aexchange interactions (electron)
000002482 65320 $$2Author$$aferromagnetic materials
000002482 65320 $$2Author$$airon
000002482 65320 $$2Author$$amagnetic force microscopy
000002482 65320 $$2Author$$ascanning tunnelling microscopy
000002482 650_7 $$2WoSType$$aJ
000002482 7001_ $$0P:(DE-Juel1)130583$$aCaciuc, V.$$b1$$uFZJ
000002482 7001_ $$0P:(DE-HGF)0$$aHölscher, H.$$b2
000002482 7001_ $$0P:(DE-HGF)0$$aHeinze, S.$$b3
000002482 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.78.214416$$bAmerican Physical Society (APS)$$d2008-12-11$$n21$$p214416$$tPhysical Review B$$v78$$x1098-0121$$y2008
000002482 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.78.214416$$gVol. 78, p. 21$$n21$$p214416$$q78<21$$tPhysical review / B$$v78$$x1098-0121$$y2008
000002482 8567_ $$uhttp://dx.doi.org/10.1103/PhysRevB.78.214416
000002482 8564_ $$uhttps://juser.fz-juelich.de/record/2482/files/PhysRevB.78.214416.pdf$$yOpenAccess
000002482 8564_ $$uhttps://juser.fz-juelich.de/record/2482/files/PhysRevB.78.214416.gif?subformat=icon$$xicon$$yOpenAccess
000002482 8564_ $$uhttps://juser.fz-juelich.de/record/2482/files/PhysRevB.78.214416.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000002482 8564_ $$uhttps://juser.fz-juelich.de/record/2482/files/PhysRevB.78.214416.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000002482 8564_ $$uhttps://juser.fz-juelich.de/record/2482/files/PhysRevB.78.214416.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000002482 909CO $$ooai:juser.fz-juelich.de:2482$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000002482 9141_ $$y2008
000002482 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000002482 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000002482 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000002482 9131_ $$0G:(DE-Juel1)FUEK412$$aDE-HGF$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000002482 9201_ $$0I:(DE-Juel1)VDB781$$d31.12.2010$$gIFF$$kIFF-1$$lQuanten-Theorie der Materialien$$x0
000002482 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$gIAS$$kIAS-1$$lQuanten-Theorie der Materialien$$x1$$zIFF-1
000002482 9201_ $$0I:(DE-82)080009_20140620$$gJARA$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x2
000002482 970__ $$aVDB:(DE-Juel1)105780
000002482 9801_ $$aFullTexts
000002482 980__ $$aVDB
000002482 980__ $$aConvertedRecord
000002482 980__ $$ajournal
000002482 980__ $$aI:(DE-Juel1)PGI-1-20110106
000002482 980__ $$aI:(DE-Juel1)IAS-1-20090406
000002482 980__ $$aI:(DE-82)080009_20140620
000002482 980__ $$aUNRESTRICTED
000002482 981__ $$aI:(DE-Juel1)PGI-1-20110106
000002482 981__ $$aI:(DE-Juel1)IAS-1-20090406
000002482 981__ $$aI:(DE-Juel1)VDB881
000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.294.5546.1483
000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1065300
000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.288.5472.1805
000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.89.226101
000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0034-4885/66/4/203
000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.94.087204
000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature05617
000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1116/1.585560
000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.50.1998
000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.86.4132
000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.59.R5320
000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.87.236104
000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.70.085405
000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.78.678
000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.58.10835
000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.88.046106
000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0169-4332(01)00943-6
000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.75.949
000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0957-4484/15/2/013
000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.73.245435
000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.96.016101
000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature05530
000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.77.153408
000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.77.045411
000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.52.7352
000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.56.3218
000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0169-4332(98)00643-6
000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0039-6028(01)01334-6
000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1143/JPSJ.72.588
000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.susc.2005.06.006
000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0169-4332(99)00529-2
000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0957-4484/15/5/018
000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1525056
000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0039-6028(03)00076-1
000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.77.045402
000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.78.104418
000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.77.3865
000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.64.195134
000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.56.16010
000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat1646
000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.97800