000002482 001__ 2482 000002482 005__ 20230426083005.0 000002482 0247_ $$2DOI$$a10.1103/PhysRevB.78.214416 000002482 0247_ $$2WOS$$aWOS:000262244400061 000002482 0247_ $$2Handle$$a2128/11071 000002482 037__ $$aPreJuSER-2482 000002482 041__ $$aeng 000002482 082__ $$a530 000002482 084__ $$2WoS$$aPhysics, Condensed Matter 000002482 1001_ $$0P:(DE-HGF)0$$aLazo, C.$$b0 000002482 245__ $$aRole of tip size, orientation, and structural relaxations in first principles studies of magnetic exchange force microscopy and spin polarized scanning tunneling microscopy 000002482 260__ $$aCollege Park, Md.$$bAPS$$c2008 000002482 300__ $$a21 000002482 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000002482 3367_ $$2DataCite$$aOutput Types/Journal article 000002482 3367_ $$00$$2EndNote$$aJournal Article 000002482 3367_ $$2BibTeX$$aARTICLE 000002482 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000002482 3367_ $$2DRIVER$$aarticle 000002482 440_0 $$04919$$aPhysical Review B$$v78$$x1098-0121 000002482 500__ $$aIt is our pleasure to thank S. Blugel, Y. Mokrousov, P. Ferriani, A. Schwarz, U. Kaiser, R. Schmidt, and R. Wiesendanger for many insightful discussions. Computations were performed at the Hamburg University of Technology, the Norddeutscher Verbund fur Hoch-und Hochstleistungsrechnen (HLRN), and the Forschungszentrum Julich (JUMP). We acknowledge financial support from the DFG (Grants No. HO 2237/3-1 and No. HE 3292/4-1). S. H. thanks the Stifterverband fur die Deutsche Wissenschaft and the Interdisciplinary Nanoscience Center Hamburg for financial support. 000002482 520__ $$aUsing first-principles calculations based on density-functional theory, we investigated the exchange interaction between a magnetic tip and a magnetic sample which is detected in magnetic exchange force microscopy (MExFM) and also occurs in spin-polarized scanning tunneling microscopy (SP-STM) experiments. As a model tip-sample system, we chose Fe tips and one monolayer Fe on W(001) which exhibits a checkerboard antiferromagnetic structure and has been previously studied with both SP-STM and MExFM. We calculated the exchange forces and energies as a function of tip-sample distance using different tip models ranging from single Fe atoms to Fe pyramids consisting of up to fourteen atoms. We find that modeling the tip by a single Fe atom leads to qualitatively different tip-sample interactions than using clusters consisting of several atoms. Increasing the cluster size changes the calculated forces, quantitatively enhancing the detectable exchange forces. Rotating the tip with respect to the surface unit cell has only a small influence on the tip-sample forces. Interestingly, the exchange forces on the tip atoms in the nearest and next-nearest layers from the apex atom are non-negligible and can be opposite to that on the apex atom for a small tip. In addition, the apex atom interacts not only with the surface atoms underneath but also with nearest neighbors in the surface. We find that structural relaxations of tip and sample due to their interaction depend sensitively on the magnetic alignment of the two systems. As a result the onset of significant exchange forces is shifted toward larger tip-sample separations which facilitates their measurement in MExFM. At small tip-sample separations, structural relaxations of tip apex and surface atoms can either enhance or reduce the magnetic contrast measured in SP-STM. 000002482 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0 000002482 542__ $$2Crossref$$i2008-12-11$$uhttp://link.aps.org/licenses/aps-default-license 000002482 588__ $$aDataset connected to Web of Science 000002482 65320 $$2Author$$aab initio calculations 000002482 65320 $$2Author$$aexchange interactions (electron) 000002482 65320 $$2Author$$aferromagnetic materials 000002482 65320 $$2Author$$airon 000002482 65320 $$2Author$$amagnetic force microscopy 000002482 65320 $$2Author$$ascanning tunnelling microscopy 000002482 650_7 $$2WoSType$$aJ 000002482 7001_ $$0P:(DE-Juel1)130583$$aCaciuc, V.$$b1$$uFZJ 000002482 7001_ $$0P:(DE-HGF)0$$aHölscher, H.$$b2 000002482 7001_ $$0P:(DE-HGF)0$$aHeinze, S.$$b3 000002482 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.78.214416$$bAmerican Physical Society (APS)$$d2008-12-11$$n21$$p214416$$tPhysical Review B$$v78$$x1098-0121$$y2008 000002482 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.78.214416$$gVol. 78, p. 21$$n21$$p214416$$q78<21$$tPhysical review / B$$v78$$x1098-0121$$y2008 000002482 8567_ $$uhttp://dx.doi.org/10.1103/PhysRevB.78.214416 000002482 8564_ $$uhttps://juser.fz-juelich.de/record/2482/files/PhysRevB.78.214416.pdf$$yOpenAccess 000002482 8564_ $$uhttps://juser.fz-juelich.de/record/2482/files/PhysRevB.78.214416.gif?subformat=icon$$xicon$$yOpenAccess 000002482 8564_ $$uhttps://juser.fz-juelich.de/record/2482/files/PhysRevB.78.214416.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000002482 8564_ $$uhttps://juser.fz-juelich.de/record/2482/files/PhysRevB.78.214416.jpg?subformat=icon-700$$xicon-700$$yOpenAccess 000002482 8564_ $$uhttps://juser.fz-juelich.de/record/2482/files/PhysRevB.78.214416.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000002482 909CO $$ooai:juser.fz-juelich.de:2482$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire 000002482 9141_ $$y2008 000002482 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement 000002482 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000002482 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed 000002482 9131_ $$0G:(DE-Juel1)FUEK412$$aDE-HGF$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0 000002482 9201_ $$0I:(DE-Juel1)VDB781$$d31.12.2010$$gIFF$$kIFF-1$$lQuanten-Theorie der Materialien$$x0 000002482 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$gIAS$$kIAS-1$$lQuanten-Theorie der Materialien$$x1$$zIFF-1 000002482 9201_ $$0I:(DE-82)080009_20140620$$gJARA$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x2 000002482 970__ $$aVDB:(DE-Juel1)105780 000002482 9801_ $$aFullTexts 000002482 980__ $$aVDB 000002482 980__ $$aConvertedRecord 000002482 980__ $$ajournal 000002482 980__ $$aI:(DE-Juel1)PGI-1-20110106 000002482 980__ $$aI:(DE-Juel1)IAS-1-20090406 000002482 980__ $$aI:(DE-82)080009_20140620 000002482 980__ $$aUNRESTRICTED 000002482 981__ $$aI:(DE-Juel1)PGI-1-20110106 000002482 981__ $$aI:(DE-Juel1)IAS-1-20090406 000002482 981__ $$aI:(DE-Juel1)VDB881 000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.294.5546.1483 000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1065300 000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.288.5472.1805 000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.89.226101 000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0034-4885/66/4/203 000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.94.087204 000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature05617 000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1116/1.585560 000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.50.1998 000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.86.4132 000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.59.R5320 000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.87.236104 000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.70.085405 000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.78.678 000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.58.10835 000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.88.046106 000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0169-4332(01)00943-6 000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.75.949 000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0957-4484/15/2/013 000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.73.245435 000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.96.016101 000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature05530 000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.77.153408 000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.77.045411 000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.52.7352 000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.56.3218 000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0169-4332(98)00643-6 000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0039-6028(01)01334-6 000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1143/JPSJ.72.588 000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.susc.2005.06.006 000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0169-4332(99)00529-2 000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0957-4484/15/5/018 000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1525056 000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0039-6028(03)00076-1 000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.77.045402 000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.78.104418 000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.77.3865 000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.64.195134 000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.56.16010 000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat1646 000002482 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.97800