001     2482
005     20230426083005.0
024 7 _ |a 10.1103/PhysRevB.78.214416
|2 DOI
024 7 _ |a WOS:000262244400061
|2 WOS
024 7 _ |a 2128/11071
|2 Handle
037 _ _ |a PreJuSER-2482
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |0 P:(DE-HGF)0
|a Lazo, C.
|b 0
245 _ _ |a Role of tip size, orientation, and structural relaxations in first principles studies of magnetic exchange force microscopy and spin polarized scanning tunneling microscopy
260 _ _ |a College Park, Md.
|b APS
|c 2008
300 _ _ |a 21
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 4919
|a Physical Review B
|v 78
|x 1098-0121
500 _ _ |a It is our pleasure to thank S. Blugel, Y. Mokrousov, P. Ferriani, A. Schwarz, U. Kaiser, R. Schmidt, and R. Wiesendanger for many insightful discussions. Computations were performed at the Hamburg University of Technology, the Norddeutscher Verbund fur Hoch-und Hochstleistungsrechnen (HLRN), and the Forschungszentrum Julich (JUMP). We acknowledge financial support from the DFG (Grants No. HO 2237/3-1 and No. HE 3292/4-1). S. H. thanks the Stifterverband fur die Deutsche Wissenschaft and the Interdisciplinary Nanoscience Center Hamburg for financial support.
520 _ _ |a Using first-principles calculations based on density-functional theory, we investigated the exchange interaction between a magnetic tip and a magnetic sample which is detected in magnetic exchange force microscopy (MExFM) and also occurs in spin-polarized scanning tunneling microscopy (SP-STM) experiments. As a model tip-sample system, we chose Fe tips and one monolayer Fe on W(001) which exhibits a checkerboard antiferromagnetic structure and has been previously studied with both SP-STM and MExFM. We calculated the exchange forces and energies as a function of tip-sample distance using different tip models ranging from single Fe atoms to Fe pyramids consisting of up to fourteen atoms. We find that modeling the tip by a single Fe atom leads to qualitatively different tip-sample interactions than using clusters consisting of several atoms. Increasing the cluster size changes the calculated forces, quantitatively enhancing the detectable exchange forces. Rotating the tip with respect to the surface unit cell has only a small influence on the tip-sample forces. Interestingly, the exchange forces on the tip atoms in the nearest and next-nearest layers from the apex atom are non-negligible and can be opposite to that on the apex atom for a small tip. In addition, the apex atom interacts not only with the surface atoms underneath but also with nearest neighbors in the surface. We find that structural relaxations of tip and sample due to their interaction depend sensitively on the magnetic alignment of the two systems. As a result the onset of significant exchange forces is shifted toward larger tip-sample separations which facilitates their measurement in MExFM. At small tip-sample separations, structural relaxations of tip apex and surface atoms can either enhance or reduce the magnetic contrast measured in SP-STM.
536 _ _ |0 G:(DE-Juel1)FUEK412
|2 G:(DE-HGF)
|a Grundlagen für zukünftige Informationstechnologien
|c P42
|x 0
542 _ _ |i 2008-12-11
|2 Crossref
|u http://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
653 2 0 |2 Author
|a ab initio calculations
653 2 0 |2 Author
|a exchange interactions (electron)
653 2 0 |2 Author
|a ferromagnetic materials
653 2 0 |2 Author
|a iron
653 2 0 |2 Author
|a magnetic force microscopy
653 2 0 |2 Author
|a scanning tunnelling microscopy
700 1 _ |0 P:(DE-Juel1)130583
|a Caciuc, V.
|b 1
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Hölscher, H.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Heinze, S.
|b 3
773 1 8 |a 10.1103/physrevb.78.214416
|b American Physical Society (APS)
|d 2008-12-11
|n 21
|p 214416
|3 journal-article
|2 Crossref
|t Physical Review B
|v 78
|y 2008
|x 1098-0121
773 _ _ |a 10.1103/PhysRevB.78.214416
|g Vol. 78, p. 21
|0 PERI:(DE-600)2844160-6
|n 21
|q 78<21
|p 214416
|t Physical review / B
|v 78
|y 2008
|x 1098-0121
856 7 _ |u http://dx.doi.org/10.1103/PhysRevB.78.214416
856 4 _ |u https://juser.fz-juelich.de/record/2482/files/PhysRevB.78.214416.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/2482/files/PhysRevB.78.214416.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/2482/files/PhysRevB.78.214416.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/2482/files/PhysRevB.78.214416.jpg?subformat=icon-700
|x icon-700
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/2482/files/PhysRevB.78.214416.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:2482
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 1 _ |0 G:(DE-Juel1)FUEK412
|a DE-HGF
|b Schlüsseltechnologien
|k P42
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|v Grundlagen für zukünftige Informationstechnologien
|x 0
914 1 _ |y 2008
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
920 1 _ |d 31.12.2010
|g IFF
|k IFF-1
|l Quanten-Theorie der Materialien
|0 I:(DE-Juel1)VDB781
|x 0
920 1 _ |g IAS
|k IAS-1
|l Quanten-Theorie der Materialien
|0 I:(DE-Juel1)IAS-1-20090406
|x 1
|z IFF-1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 2
970 _ _ |a VDB:(DE-Juel1)105780
980 1 _ |a FullTexts
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-1-20110106
981 _ _ |a I:(DE-Juel1)IAS-1-20090406
981 _ _ |a I:(DE-Juel1)VDB881
999 C 5 |a 10.1126/science.294.5546.1483
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1065300
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.288.5472.1805
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.89.226101
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0034-4885/66/4/203
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.94.087204
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nature05617
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1116/1.585560
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.50.1998
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.86.4132
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.59.R5320
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.87.236104
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.70.085405
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.78.678
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.58.10835
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.88.046106
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0169-4332(01)00943-6
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/RevModPhys.75.949
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0957-4484/15/2/013
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.73.245435
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.96.016101
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nature05530
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.77.153408
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.77.045411
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.52.7352
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.56.3218
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0169-4332(98)00643-6
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0039-6028(01)01334-6
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1143/JPSJ.72.588
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.susc.2005.06.006
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0169-4332(99)00529-2
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0957-4484/15/5/018
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.1525056
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0039-6028(03)00076-1
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.77.045402
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.78.104418
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.77.3865
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.64.195134
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.56.16010
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nmat1646
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.97800
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21