001     25009
005     20240708132734.0
024 7 _ |2 DOI
|a 10.1023/A:1004849322160
024 7 _ |2 WOS
|a WOS:000166422700019
037 _ _ |a PreJuSER-25009
041 _ _ |a eng
082 _ _ |a 670
084 _ _ |2 WoS
|a Materials Science, Multidisciplinary
100 1 _ |a Vaßen, R.
|0 P:(DE-Juel1)129670
|b 0
|u FZJ
245 _ _ |a Modelling of the agglomeration of Ni-particles in anodes of solid oxide fuel cells
260 _ _ |a Dordrecht [u.a.]
|b Springer Science + Business Media B.V
|c 2001
300 _ _ |a 147 - 151
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Journal of Materials Science
|x 0022-2461
|0 3507
|v 36
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a The degradation of anodes of solid oxide fuel cells (SOFC), which consist of a porous metal - solid electrolyte material is described by a two particle model. The model is based on two main assumptions. Firstly, the difference in metal particle diameter is the driving force for the observed coarsening of the larger metal particle during long term annealing. Secondly, surface diffusion of metal atoms on the particle surface is the dominant diffusion mechanism. Additionally, a function was introduced which considers the limited space for the growth of the nickel particles in the cermet material. The found analytical function for the growth kinetics was compared to experimental results for the growth of nickel particles in a nickel - yttria stabilised zirconia (YSZ) anode annealed at 1000 degreesC up to 4000 h. The model describes the time dependence of the observed particle radii in an adequate way. The resultant surface diffusion coefficients for Ni are lower than results found in literature. Possible explanations are discussed. However, the result shows that the proposed mechanism - surface diffusion of nickel atoms - is fast enough to explain the found amount of Ni agglomeration in SOFC anodes and is therefore considered to be the dominant mechanism. (C) 2001 Kluwer Academic Publishers.
536 _ _ |a Werkstoff- und Bauteilentwicklung für die Hochtemperatur-Brennstoffzelle
|c 11.10.0
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK22
|x 0
536 _ _ |a SOFC - Solid Oxide Fuel Cell (SOFC-20140602)
|0 G:(DE-Juel1)SOFC-20140602
|c SOFC-20140602
|x 1
|f SOFC
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Simwonis, D.
|0 P:(DE-Juel1)VDB1534
|b 1
|u FZJ
700 1 _ |a Stöver, D.
|0 P:(DE-Juel1)129666
|b 2
|u FZJ
773 _ _ |a 10.1023/A:1004849322160
|g Vol. 36, p. 147 - 151
|p 147 - 151
|q 36<147 - 151
|0 PERI:(DE-600)2015305-3
|t Journal of materials science
|v 36
|y 2001
|x 0022-2461
909 C O |o oai:juser.fz-juelich.de:25009
|p VDB
913 1 _ |k 11.10.0
|v Werkstoff- und Bauteilentwicklung für die Hochtemperatur-Brennstoffzelle
|l Werkstoffe der Energietechnik
|b Energietechnik
|0 G:(DE-Juel1)FUEK22
|x 0
914 1 _ |y 2001
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k IWV-1
|l Werkstoffsynthese und Herstellungsverfahren
|d 31.12.2006
|g IWV
|0 I:(DE-Juel1)VDB5
|x 0
970 _ _ |a VDB:(DE-Juel1)1864
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013
981 _ _ |a I:(DE-Juel1)IEK-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21