000255480 001__ 255480
000255480 005__ 20240711085649.0
000255480 0247_ $$2doi$$a10.1016/j.jeurceramsoc.2014.11.017
000255480 0247_ $$2ISSN$$a0955-2219
000255480 0247_ $$2ISSN$$a1873-619X
000255480 0247_ $$2WOS$$aWOS:000348686200017
000255480 037__ $$aFZJ-2015-05642
000255480 082__ $$a660
000255480 1001_ $$0P:(DE-Juel1)129669$$aVan Gestel, Tim$$b0$$eCorresponding author$$ufzj
000255480 245__ $$aProcessing of 8YSZ and CGO thin film electrolyte layers for intermediate- and low-temperature SOFCs
000255480 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2015
000255480 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1442229631_14017
000255480 3367_ $$2DataCite$$aOutput Types/Journal article
000255480 3367_ $$00$$2EndNote$$aJournal Article
000255480 3367_ $$2BibTeX$$aARTICLE
000255480 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000255480 3367_ $$2DRIVER$$aarticle
000255480 520__ $$aAn extensive experimental investigation has been carried out in order to prepare novel thin film electrolytes for enhanced SOFCs. Methods of producing ultra-thin 8 mol% Y2O3-doped ZrO2 (8YSZ) electrolytes (<1 μm) and thin 10 mol% Gd2O3-doped CeO2 (10CGO) electrolytes (∼1 μm) are presented. The method deposits such thin dense films onto a highly porous anode substrate. As opposed to conventional powder deposition techniques, the method involves depositing a dispersion of nanoparticles to achieve a thin-film mesoporous layer. After sintering at 1400 °C, the deposited mesoporous layer becomes a dense thin film with a thickness of ∼1 μm or even thinner. Such thicknesses are significantly below the limit currently achievable with powder deposition techniques (∼10 μm). The electrolyte layer thickness is comparable to the thicknesses found in micro-SOFCs, but here conventional macroporous SOFC substrates are used. Of considerable importance is the use of a spin-coating process, due to its simplicity and the potential ease of further scaling-up. Results from SEM and leakage tests confirmed that the thin-film electrolytes are homogeneous and have a low number of defects after sintering at 1400 °C. The average leak rate for air was 1–2 × 10−5 mbar l s−1 cm−2 for the 8YSZ electrolyte and 10−4 mbar l s−1 cm−2 for the 10CGO electrolyte.
000255480 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000255480 588__ $$aDataset connected to CrossRef
000255480 7001_ $$0P:(DE-Juel1)129662$$aSebold, Doris$$b1$$ufzj
000255480 7001_ $$0P:(DE-Juel1)129594$$aBuchkremer, Hans Peter$$b2$$ufzj
000255480 773__ $$0PERI:(DE-600)2013983-4$$a10.1016/j.jeurceramsoc.2014.11.017$$gVol. 35, no. 5, p. 1505 - 1515$$n5$$p1505 - 1515$$tJournal of the European Ceramic Society$$v35$$x0955-2219$$y2015
000255480 8564_ $$uhttps://juser.fz-juelich.de/record/255480/files/1-s2.0-S0955221914006293-main.pdf$$yRestricted
000255480 8564_ $$uhttps://juser.fz-juelich.de/record/255480/files/1-s2.0-S0955221914006293-main.gif?subformat=icon$$xicon$$yRestricted
000255480 8564_ $$uhttps://juser.fz-juelich.de/record/255480/files/1-s2.0-S0955221914006293-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000255480 8564_ $$uhttps://juser.fz-juelich.de/record/255480/files/1-s2.0-S0955221914006293-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000255480 8564_ $$uhttps://juser.fz-juelich.de/record/255480/files/1-s2.0-S0955221914006293-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000255480 8564_ $$uhttps://juser.fz-juelich.de/record/255480/files/1-s2.0-S0955221914006293-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000255480 909CO $$ooai:juser.fz-juelich.de:255480$$pVDB
000255480 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129669$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000255480 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129662$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000255480 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129594$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000255480 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000255480 9141_ $$y2015
000255480 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ EUR CERAM SOC : 2014
000255480 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000255480 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000255480 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000255480 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000255480 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000255480 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000255480 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000255480 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000255480 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000255480 920__ $$lyes
000255480 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000255480 980__ $$ajournal
000255480 980__ $$aVDB
000255480 980__ $$aI:(DE-Juel1)IEK-1-20101013
000255480 980__ $$aUNRESTRICTED
000255480 981__ $$aI:(DE-Juel1)IMD-2-20101013