Home > Publications database > Processing of 8YSZ and CGO thin film electrolyte layers for intermediate- and low-temperature SOFCs > print |
001 | 255480 | ||
005 | 20240711085649.0 | ||
024 | 7 | _ | |a 10.1016/j.jeurceramsoc.2014.11.017 |2 doi |
024 | 7 | _ | |a 0955-2219 |2 ISSN |
024 | 7 | _ | |a 1873-619X |2 ISSN |
024 | 7 | _ | |a WOS:000348686200017 |2 WOS |
037 | _ | _ | |a FZJ-2015-05642 |
082 | _ | _ | |a 660 |
100 | 1 | _ | |a Van Gestel, Tim |0 P:(DE-Juel1)129669 |b 0 |e Corresponding author |u fzj |
245 | _ | _ | |a Processing of 8YSZ and CGO thin film electrolyte layers for intermediate- and low-temperature SOFCs |
260 | _ | _ | |a Amsterdam [u.a.] |c 2015 |b Elsevier Science |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1442229631_14017 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a article |2 DRIVER |
520 | _ | _ | |a An extensive experimental investigation has been carried out in order to prepare novel thin film electrolytes for enhanced SOFCs. Methods of producing ultra-thin 8 mol% Y2O3-doped ZrO2 (8YSZ) electrolytes (<1 μm) and thin 10 mol% Gd2O3-doped CeO2 (10CGO) electrolytes (∼1 μm) are presented. The method deposits such thin dense films onto a highly porous anode substrate. As opposed to conventional powder deposition techniques, the method involves depositing a dispersion of nanoparticles to achieve a thin-film mesoporous layer. After sintering at 1400 °C, the deposited mesoporous layer becomes a dense thin film with a thickness of ∼1 μm or even thinner. Such thicknesses are significantly below the limit currently achievable with powder deposition techniques (∼10 μm). The electrolyte layer thickness is comparable to the thicknesses found in micro-SOFCs, but here conventional macroporous SOFC substrates are used. Of considerable importance is the use of a spin-coating process, due to its simplicity and the potential ease of further scaling-up. Results from SEM and leakage tests confirmed that the thin-film electrolytes are homogeneous and have a low number of defects after sintering at 1400 °C. The average leak rate for air was 1–2 × 10−5 mbar l s−1 cm−2 for the 8YSZ electrolyte and 10−4 mbar l s−1 cm−2 for the 10CGO electrolyte. |
536 | _ | _ | |a 113 - Methods and Concepts for Material Development (POF3-113) |0 G:(DE-HGF)POF3-113 |c POF3-113 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Sebold, Doris |0 P:(DE-Juel1)129662 |b 1 |u fzj |
700 | 1 | _ | |a Buchkremer, Hans Peter |0 P:(DE-Juel1)129594 |b 2 |u fzj |
773 | _ | _ | |a 10.1016/j.jeurceramsoc.2014.11.017 |g Vol. 35, no. 5, p. 1505 - 1515 |0 PERI:(DE-600)2013983-4 |n 5 |p 1505 - 1515 |t Journal of the European Ceramic Society |v 35 |y 2015 |x 0955-2219 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/255480/files/1-s2.0-S0955221914006293-main.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/255480/files/1-s2.0-S0955221914006293-main.gif?subformat=icon |x icon |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/255480/files/1-s2.0-S0955221914006293-main.jpg?subformat=icon-1440 |x icon-1440 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/255480/files/1-s2.0-S0955221914006293-main.jpg?subformat=icon-180 |x icon-180 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/255480/files/1-s2.0-S0955221914006293-main.jpg?subformat=icon-640 |x icon-640 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/255480/files/1-s2.0-S0955221914006293-main.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:255480 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)129669 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)129662 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)129594 |
913 | 1 | _ | |a DE-HGF |l Energieeffizienz, Materialien und Ressourcen |1 G:(DE-HGF)POF3-110 |0 G:(DE-HGF)POF3-113 |2 G:(DE-HGF)POF3-100 |v Methods and Concepts for Material Development |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
914 | 1 | _ | |y 2015 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J EUR CERAM SOC : 2014 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-1-20101013 |k IEK-1 |l Werkstoffsynthese und Herstellungsverfahren |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IEK-1-20101013 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IMD-2-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|