001     255480
005     20240711085649.0
024 7 _ |a 10.1016/j.jeurceramsoc.2014.11.017
|2 doi
024 7 _ |a 0955-2219
|2 ISSN
024 7 _ |a 1873-619X
|2 ISSN
024 7 _ |a WOS:000348686200017
|2 WOS
037 _ _ |a FZJ-2015-05642
082 _ _ |a 660
100 1 _ |a Van Gestel, Tim
|0 P:(DE-Juel1)129669
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Processing of 8YSZ and CGO thin film electrolyte layers for intermediate- and low-temperature SOFCs
260 _ _ |a Amsterdam [u.a.]
|c 2015
|b Elsevier Science
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1442229631_14017
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a An extensive experimental investigation has been carried out in order to prepare novel thin film electrolytes for enhanced SOFCs. Methods of producing ultra-thin 8 mol% Y2O3-doped ZrO2 (8YSZ) electrolytes (<1 μm) and thin 10 mol% Gd2O3-doped CeO2 (10CGO) electrolytes (∼1 μm) are presented. The method deposits such thin dense films onto a highly porous anode substrate. As opposed to conventional powder deposition techniques, the method involves depositing a dispersion of nanoparticles to achieve a thin-film mesoporous layer. After sintering at 1400 °C, the deposited mesoporous layer becomes a dense thin film with a thickness of ∼1 μm or even thinner. Such thicknesses are significantly below the limit currently achievable with powder deposition techniques (∼10 μm). The electrolyte layer thickness is comparable to the thicknesses found in micro-SOFCs, but here conventional macroporous SOFC substrates are used. Of considerable importance is the use of a spin-coating process, due to its simplicity and the potential ease of further scaling-up. Results from SEM and leakage tests confirmed that the thin-film electrolytes are homogeneous and have a low number of defects after sintering at 1400 °C. The average leak rate for air was 1–2 × 10−5 mbar l s−1 cm−2 for the 8YSZ electrolyte and 10−4 mbar l s−1 cm−2 for the 10CGO electrolyte.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Sebold, Doris
|0 P:(DE-Juel1)129662
|b 1
|u fzj
700 1 _ |a Buchkremer, Hans Peter
|0 P:(DE-Juel1)129594
|b 2
|u fzj
773 _ _ |a 10.1016/j.jeurceramsoc.2014.11.017
|g Vol. 35, no. 5, p. 1505 - 1515
|0 PERI:(DE-600)2013983-4
|n 5
|p 1505 - 1515
|t Journal of the European Ceramic Society
|v 35
|y 2015
|x 0955-2219
856 4 _ |u https://juser.fz-juelich.de/record/255480/files/1-s2.0-S0955221914006293-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/255480/files/1-s2.0-S0955221914006293-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/255480/files/1-s2.0-S0955221914006293-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/255480/files/1-s2.0-S0955221914006293-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/255480/files/1-s2.0-S0955221914006293-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/255480/files/1-s2.0-S0955221914006293-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:255480
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129669
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129662
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129594
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2015
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J EUR CERAM SOC : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21