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Abstract

Targeting toxic amyloid beta (Aβ) oligomers is currently a very attractive drug development

strategy for treatment of Alzheimer´s disease. Using mirror-image phage display against

Aβ1-42, we have previously identified the fully D-enantiomeric peptide D3, which is able to

eliminate Aβ oligomers and has proven therapeutic potential in transgenic Alzheimer´s dis-

ease animal models. However, there is little information on the pharmacokinetic behaviour

of D-enantiomeric peptides in general. Therefore, we conducted experiments with the triti-

um labelled D-peptide D3 (3H-D3) in mice with different administration routes to study its

distribution in liver, kidney, brain, plasma and gastrointestinal tract, as well as its bioavail-

ability by i.p. and p.o. administration. In addition, we investigated the metabolic stability in

liver microsomes, mouse plasma, brain, liver and kidney homogenates, and estimated the

plasma protein binding. Based on its high stability and long biological half-life, our pharma-

cokinetic results support the therapeutic potential of D-peptides in general, with D3 being a

new promising drug candidate for Alzheimer´s disease treatment.

Introduction

After the initial description by Alois Alzheimer in 1906 [1], Alzheimer’s disease (AD), a pro-

gressive neurodegenerative disorder, has become nowadays the most common form (60–80%)

of dementia [2]. According to the World Alzheimer Report 2014, nearly 36 million people

worldwide are suffering from AD or related dementia. Even after years of intensive
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investigation and research, it is still an incurable disease [3]. Current treatments are only sup-

portive against some of its symptoms. Clinical duration of AD varies from one to 25 years, typi-

cally eight to ten years [4].

Amyloid beta (Aβ) is produced by sequential cleavage of a type I integral transmembrane

protein, called amyloid precursor protein (APP) by β- and γ-secretases. Variable lengths of Aβ

isomers differing at the C-terminus are produced due to imprecise cleavage by γ-secretase [5,

6]. The most abundant isomers are Aβ1–40 (approximately 80–90%) and Aβ1–42 (approxi-

mately 5–10%). Aβ1–42 is more hydrophobic and fibrillogenic, and therefore the main compo-

nent of Aβ plaques in the brain of AD patients [7]. It also aggregates readily into oligomers,

which are considered to be the most toxic form of Aβ [8–10].

In recent years, many substances have been developed targeting Aβ production and clear-

ance [11], including peptide-based drugs [12, 13]. In spite of the many advantages of peptide

drugs, for example high specificity and low toxicity, their short half-life time in vivo due to

rapid degradation by proteases, and low bioavailability by oral administration, restrict their

clinical usage. In comparison to naturally occurring L-form peptides, peptides derived from

partial D-amino acid substitutions or D-enantiomeric peptides, which are composed entirely

of D-amino acids, have advantages over L-enantiomers. Because of the stereoisomeric selectivi-

ty of proteolytic enzymes they are less prone to proteolysis, therefore longer half-lives and

higher bioavailability after oral administration are to be expected [14–16]. Furthermore, they

are less or even not immunogenic at all [13].

The fully D-enantiomeric peptide D3, which was identified by mirror-image phage display

[17, 18] for binding to Aβ (1–42), has been shown to have interesting properties. D3 inhibits

Aβ fibril formation and eliminates Aβ-oligomers in vitro. Ex vivo, D3 has been shown to specif-

ically bind to amyloid plaques in transgenic mice [19]. In vivo, D3 was able to reduce plaque

load and inflammation markers in the brains of treated transgenic mice, as well as improve

their cognition even after oral administration [20–23]. Here we investigate the pharmacokinet-

ic properties of D3 in mice.

We present the first comprehensive preclinical pharmacokinetic study of a peptide consist-

ing solely of D-enantiomeric amino acid residues in general and in particular for such a D-pep-

tide developed for the treatment of Alzheimer’s disease.

Materials and Methods

Materials
3H-D3 (rprtr-(4,5-3H-Leu)-hthrnr) and its L-form enantiomer 3H-(L)-D3 (RPRTR-

(4,5-3H-Leu)-HTHRNR) were purchased from Quotient Bioresearch (Radiochemicals) Ltd.

(Cardiff, United Kingdom) with 10–100 Ci/mmol, 1 mCi/ml and purity>95%.

All chemicals were supplied by Fluka Chemie AG (Buchs, Switzerland), Merck (Darmstadt,

Germany), AppliChem (Darmstadt, Germany) and VWR (Darmstadt, Germany) in research

grade. Micro-osmotic pumps (model 1007D) were purchased from Alzet DURECT Corpora-

tion, (Cupertino, CA, USA).

Animals

Male C57Bl/6 mice (Charles River, Sulzfeld Germany) with an average age of 13 weeks and

body weight of 28.5 g were used in this study. For micro-osmotic pump i.p. implantation ex-

periment, 19 months old mice were used with average body weight of 34 g. The mice were

hosted in the animal facility of the Forschungszentrum Juelich under standard housing condi-

tions with free access to food and water for at least 2 weeks before experiment. All animal ex-

periments were approved by the Animal Protection Committee of the local government
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(LANUV (Landesamt für Natur, Umwelt und Verbraucherschutz), North-Rhine-Westphalia,

Germany, AZ84-02.04.2011. A359 and AZ84-02.04.2011. A356) according to the Deutsche

Tierschutzgesetz). All sections of this study adhere to the ARRIVE Guidelines for reporting an-

imal research [24]. A completed ARRIVE guidelines checklist was included in Supporting In-

formation (S1 File).

Pharmacokinetic studies

Mice were administered with 100 μl radioactive working solution consisting of 5 μCi 3H-D3 in

5 μl with 95 μl buffer (0.1 M phosphate buffer, pH 8) as a single bolus dose either i.v. (tail vein),

i.p. or p.o. (gavaging). In order to achieve the desired total D3 concentration, non-radioactive

D3 was added to a concentration of 1 mg/ml (i.v.) or 3 mg/ml (i.p. and p.o.). Doses were select-

ed from previous tolerability studies and were not causing any adverse effects. I.v. injections

and i.p micro-osmotic pump implantations were performed under anaesthesia with ketamine/

medetomidine per i.p. administration. Antisedan was administered s.c. to reverse the anaesthe-

sia directly after the intervention, which took about 10 min. Sampling times were chosen de-

pending on the route of administration (i.p.: 10, 20, 30, 60, 120, 240, 360, 1440 and 2880 min.;

p.o.: 10, 20, 30, 60, 120, 240, 360, 1080, 1440, 2880 and 4320 min.; i.v.: 3, 5, 10, 15, 30, 60, 240,

1440 and 2880 min.; 3 animals per time point). For i.p. micro-osmotic pump implantation, de-

livery dose of pumps was set to 5 μCi 3H-D3 plus 0.3 mg non-radioactive D3 per 24 hours per

mouse. Sampling times were 2, 4 and 6 days after implantation (3 mice per time point).

Upon sampling time, blood was drawn per heart puncture under isoflurane anaesthesia and

heparinized plasma was isolated. A small piece of liver (approx. 0.2 g), the left kidney and the

right brain hemisphere were sampled. To study the gastrointestinal absorption and elimination

by p.o. administration, mice were fasted 18 hours before the experiment and their complete

gastrointestinal tracts were prepared. Small intestine was dissected into 4 equal parts and

marked from oral to aboral as 1 to 4, respectively. Organ samples were weighted and homoge-

nized in homogenizer tubes (Precellys Ceramic Kit 1.4 mm, Precellys 24, Bertin technologies

SAS, Montigny le Bretonneux, France) with 500 μl PBS. 10 ml scintillation cocktail (Ultima

Gold XR, PerkinElmer, Waltham, Massachusetts, USA) was added to 100 μl of each organ ho-

mogenate or plasma (diluted 1:1 with PBS) and mixed well. Disintegrations per unit time

(dpm) were obtained in triplicates with a liquid scintillation counter (Packard Tri-Carb

2100TR Liquid Scintillation Analyser, PerkinElmer, Waltham, MA, USA). Blank values of each

sample were obtained by omitting radioactive substance following the same protocol.

Radioactivity counted in each sample was adjusted (subtraction of the blank value) and was

expressed as percentage injected dose per gram tissue or millilitre plasma (%ID/g or %ID/ml),

or as milligram of total D3 per gram tissue or millilitre plasma (mg/g or mg/ml).

Pharmacokinetic analysis

Pharmacokinetic parameters were calculated with non-compartmental analysis using Phoenix

WinNonlin, version 6.3 (Pharsight Corp., St. Louis, USA). Mean D3 concentrations per time

point were used to calculate the PK parameters (model type: plasma (200–202); calculation

method: linear trapezoidal linear interpolation; dose options: “IV Bolus” for i.v. or “Extravascu-

lar” for i.p. and p.o. administration). The same model setting was used to estimate pharmacoki-

netic parameters of brain. For i.v. administration, plasma concentration at time zero (C0) was

back extrapolated with a log-linear regression of the first two observed plasma concentrations,

while brain C0 was set to be zero. For the i.p. and p.o. administrations, all concentrations at

time zero were set to be zero.

Pharmacokinetic Study of the D-Peptide D3
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The last three to five observed mean plasma concentrations were used to estimate the first

order rate constant in the terminal elimination phase (Lambda_z) based on the largest adjusted

square of the correlation coefficient (R2) of the log-linear regression lines. The area under the

curve (AUC) from C0 extrapolated to infinity (AUCC0-inf) was calculated as the sum of AUC-

C0-last+(Clast/Lambda_z), calculated from the last determined concentration derived by Lamb-

da_z, and AUCC0-last representing the AUC from time point zero to the last observed

concentration (Clast). Parameters that do not require Lambda_z were calculated for brain data:

time of maximal observed concentration (Tmax), maximal observed concentration (Cmax),

maximal observed concentration normalized to dose (Cmax/D), AUCC0-last and mean resi-

dence time from the time of dosing to the last time point (MRTC0-last). Additional parameters

requiring estimated Lambda_z were calculated for plasma data: Lambda_z, terminal half-life

(HL_Lambda_z), AUCC0-inf, terminal volume of distribution (Vz), plasma clearance (Cl),

MRTC0-inf and volume of distribution at steady state (Vss). Absolute bioavailability of i.p. and

p.o. administration was calculated with AUCC0-inf by: F(bioavailability) = [AUC(non-iv)�Dose

(iv)]/[AUC(iv)�Dose(non-iv)]�100.

To minimize the time dependence of brain-plasma ratio by bolus dosing, brain-plasma ratio

was calculated from the areas under the brain and plasma concentration curves in the terminal

elimination phase starting from 4 hours to infinity (brain_AUC4h-inf/plasma_AUC4h-inf).

Plasma protein binding

Plasma protein binding was estimated by incubation of D3 with varying concentrations of pro-

tein using TRANSILXL binding kits (Sovicell GmbH, Leipzig, Germany). KD values were deter-

mined by titrating a constant drug concentration against different concentrations of human

serum albumin (HSA) and α1-acid glycoprotein (AGP). Experiments were performed as rec-

ommended for the kit. To obtain the desired D3 stock solution of 80 μM, non-radioactively la-

belled D3 was dissolved in PBS and 5% 3H-labelled D3 solution was added for detection

purposes. A final concentration of 5 μMD3 was applied in the assay. After incubation and cen-

trifugation 15 μl supernatant were taken and scintillation cocktail was added. This was done in

triplicate. Radioactivity was then quantified using liquid scintillation counting. After measur-

ing the disintegrations per minute (dpm) of the supernatant containing the unbound peptide,

the D3 fraction bound to the titrated protein was calculated and plotted against the protein

concentrations. The curves were fitted to the Michaelis Menten ligand binding equation (Sig-

maPlot 11.0, Systat Software, Inc., San Jose, California, USA) to obtain the KD. Mean and rela-

tive standard error (%) of multiple measurements are given (AGP n = 3, HSA n = 2).

For bioavailability determination, the unbound fraction of D3 (fu) was calculated using the

equation below:

fu ¼ 100 �

CD3�KD�Cphysiol

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

KD � CD3 þ
CD3�KD�Cphysiol

2

� �2

r

CD3

ð1Þ

For very low D3 concentrations in blood (CD3), Eq (1) can be simplified by Eq (2), where the

unbound fraction of D3 can be calculated independently of the applied D3 concentration.

Since this is true for our in vivo experiments we used Eq (2) for the total free fraction of D3,

combining the binding of D3 to HSA and AGP. For calculation of the overall unbound fraction

according to Eq (2), physiological concentrations (Cphysiol) of 0.65 mMHSA and 0.02 mM
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AGP were assumed.

fu;total ¼ 100 �
1

1þ
CphysiolHSA

KDHSA
þ

CphysiolAGP

KDAGP

ð2Þ

Calibration curves and internal standard

Calibration curves were prepared by adding a corresponding 3H-D3 dilution series with certain

dpm range to plasma or organ homogenates in comparison to those diluted in PBS. The dpm

ranges of each 3H-D3 dilution series were set to cover the measured dpm ranges of each sample

(for plasma 400–40000; for brain 100–1200; for liver 3000–15000; for kidney 40000–400000).

Plasma and organ homogenates obtained from C57Bl/6 mice were prepared following the

same procedure as outlined above.

No differences were found comparing the calibration curves of 3H-D3 in organ homoge-

nates or plasma to those in PBS. The measured dpm values of the internal standard with
3H-D3 in PBS matched closely the expected ones.

Thin layer chromatography

In order to study the proteolytic stability of peptides in biological extracts, tritium labelled pep-

tides were incubated with liver microsomes (pooled from mouse (CD-1), Sigma-Aldrich),

freshly prepared mouse plasma or extracts of brain, liver and kidney at 37°C for different time

periods (from 0 min to 2 days). 1 μCi (approx. 0.08–0.8 μg) radioactive labelled peptide was

mixed with 1 μl microsomes stock solution, plasma or organ extracts, respectively (in great ex-

cess to peptide). Mixtures containing tritium-labelled peptides were applied onto HPTLC Silica

Gel 60 plates (OMNILAB, Essen, Germany) for thin layer chromatography (TLC) with a mo-

bile solvent (2-Butanol/Pyridine/Ammonia(28%)/Water(39/34/10/26)). After development, a

phosphor imaging plate for 3H-autoradiography (FUJIFILM, Tokyo, Japan) was exposed to the

TLC plates for 3 days. Images were acquired with a BAS reader and AIDA software (Raytest,

Freiburg, Germany). Retardation factor (Rf) of each substance was defined as the ratio of the

migration distance of the centre of a separated spot to the migration distance of the

solvent front.

Results

Proteolytic stability of D3 in comparison to its L-enantiomer

Before meaningful pharmacokinetic studies could be performed with 3H-D3, it was essential to

show that the D-peptide is stable under near in vivo conditions. First, we compared the stability

of 3H-D3 with its exact enantiomer, 3H-(L)-D3 in plasma (Fig 1). 3H-(L)-D3 shows significant

degradation already after 60 min incubation in plasma as concluded by the appearance of addi-

tional bands as compared to the mixture at 0 min on the TLC plate after detection by autoradi-

ography. In contrast, 3H-D3 did not show any degradation products even after 2 d incubation

in the same plasma preparation.

More importantly, 3H-D3, was neither degraded after 2 h incubation in liver microsomes

nor after 2 days incubation in homogenates of kidney, brain and liver as shown by TLC and de-

tection by autoradiography (Fig 2). Microsomes were checked for proteolytic activity using L-

peptide substrates.

Due to high but unspecific affinity of D3 and (L)-D3 to the TLC plate support material

(glass), artefacts were observed at the starting points of the TLC as well as light smears

Pharmacokinetic Study of the D-Peptide D3
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originating thereof. To prove that these compounds were not located in the layer of the TLC

matrices, a control experiment was performed by placing a new TLC plate to a freshly devel-

oped plate to transfer only the 3H-peptides within matrices, but not those on the glass surface

support (Fig 3). Artefacts could thus be eliminated.

Pharmacokinetics

Time dependent distribution of D3 in organs and plasma after different administration routes

was analysed using tritium labelled D3 (3H-D3) as shown in Fig 4. The corresponding pharma-

cokinetic parameters calculated with non-compartmental analysis based on the absolute

amount of administered D3 are shown in Tables 1 and 2.

After i.v. and i.p. administration, pharmacokinetic curves showed similar patterns with

highest concentration of tritium per gram tissue found in kidney, followed by liver and plasma.

Fig 1. Autoradiogram demonstrating proteolytic stability of 3H labelled peptides in plasma. 3H-D3 was incubated with plasma for different times at
37°C and developed on TLC plates. For comparison, the exact enantiomer of D3, (L)-D3, was used in this stability assay. 3H-(L)-D3 was incubated with
plasma for 0 and 60 min at 37°C. Please note that free 3H-(L)-D3 and free 3H-D3 are perfect enantiomers to each other and because the TLCmaterial is not
chiral, both compounds show identical Rf values. Additional bands in the 0 min lanes of 3H-(L)-D3 and 3H-D3 that arise from binding and co-migration of
3H-D3 and 3H-(L)-D3 to plasma components do not necessarily have identical Rf values in the 0 min lanes of 3H-(L)-D3 and 3H-D3, because some of the
plasma components are enantiomers themselves. Therefore, any effect of degradation will lead to extra additional bands as compared to the 0 min lane of
the very same compound. Obvious proteolytic degradation can be observed for 3H-(L)-D3 already after 60 min incubation with plasma leading to additionally
appearing bands (black arrows) as compared to the 0 min lane 3H-(L)-D3. Additionally appearing bands as compared to 0 min incubation are not observed for
3H-D3 even after 2 days incubation.

doi:10.1371/journal.pone.0128553.g001

Pharmacokinetic Study of the D-Peptide D3

PLOSONE | DOI:10.1371/journal.pone.0128553 June 5, 2015 6 / 15



However, after oral administration 3H-D3 concentrations measured in kidney and liver did not

exceed concentrations in plasma (Fig 4). Plasma Cmax/D after i.v. administration reached

78 μg/ml/mg at Tmax 3 min (the first sampling time point), while after i.p. and p.o. administra-

tion plasma Cmax/D were 47 μg/ml/mg at 10 min and 1.5 μg/ml/mg at 240 min (Table 1). In

brain, the Cmax/D and their corresponding Tmax values for i.v., i.p. and p.o. administration

were 2.8, 2.2 and 1.3 μg/ml/mg at 3, 20 and 240 min, respectively (Table 2). However, after 4

hours concentrations in brain reached similar concentrations irrespectively of the administra-

tion route (Fig 4). Although plasma concentrations after p.o. administration appeared to be

very low in comparison to i.v. and i.p. administration, comparable concentrations of 3H-D3

were found in the brain resulting in high brain/plasma ratio after 4 h (Fig 5).

4 hours after a 3H-D3 bolus dose, brain/plasma ratio of all administration routes reached a

plateau between 0.7 and 1.0 (Fig 5). To minimize the time dependence of brain/plasma ratio,

the absolute ratios were calculated from the area under the brain and plasma concentration

Fig 2. Autoradiogram demonstrating proteolytic stability of 3H labelled peptides in liver microsomes and organ homogenates. 3H-D3 was incubated
with kidney, brain and liver homogenate for 0, 10, 30, 60, 240 min and 1, 2 days at 37°C and developed on TLC plates. For liver microsomes, the incubation
time was 0, 10, 30, 60 and 120 min. Slight difference in Rf values of 3H-D3 in liver homogenate might be due to incompletely homogenized liver tissues,
which was not observed after incubation with liver microsomes. (Two autoradiograms of liver homogenate were presented in one image and separated
through a dashed line.) No obvious proteolytic degradation of D3 can be observed in all the organ homogenates with up to two days’ incubation.

doi:10.1371/journal.pone.0128553.g002
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curves from 4 hours to infinity (brain_AUC4h-inf/plasma_AUC4h-inf) with 1.07 for i.v., 0.69 for

i.p., and 0.85 for p.o. administration.

After bolus administration, D3 showed relatively long elimination half-lives in plasma of

31.8 h, 41.2 h and 40.7 h after i.v., i.p. and p.o. administration, respectively. Plasma clearance

was 0.12 ml/min after i.v. administration. Apparent volumes of distribution were different

among i.v., i.p. and p.o. administration with 316, 444 and 684 ml, respectively (Table 1).

Absolute bioavailability was high with 92.2% after i.p. administration and 58.3% after p.o.

administration (Table 1). When studying gastrointestinal distribution of D3 after p.o. adminis-

tration (Fig 6), most of the radioactivity was found in the lower intestinal tract after 4 hours,

which suggested that the majority of D3 did not enter the system circulation within 4 hours.

Still, the AUC of D3 in brain after p.o. administration was comparable to those after i.p. and i.

v. administration (Table 2).

We were also interested in answering the question, whether continuous dosing over several

days using an i.p. implanted osmotic pump is showing specific effects in D3 distribution. We found

linearly increasing D3 concentrations in plasma and all tested organs over 6 days (Fig 7). Although

D3 highly accumulated in liver and kidney at day 6, the mice did not show any obvious signs of in-

toxication. The brain/plasma ratio increased with time from 0.53 at day 2 to 0.77 at day 6.

Plasma protein binding of D3

To estimate the free fraction of D3 in plasma in vivo (fu,total), D3 was incubated with human

serum albumin (HSA) and α1-acid glycoprotein (AGP) in an in vitro assay (Fig 8). The plasma

Fig 3. Plate-transfer of 3H-D3 in TLCmatrices. A control experiment was performed by placing a new TLC
plate to a freshly developed plate to transfer only the 3H-D3 within matrices. On the mirror image of the
transferred plate, the 3H signals at the start points as well as the smears were obviously reduced, while the
intensity of separated 3H-D3 did only change slightly. This result suggests that the observed artefacts arise
from unspecific 3H-D3 binding to the glass surface.

doi:10.1371/journal.pone.0128553.g003
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protein binding assay for AGP resulted in a KD of 1.8 μM ± 7.9%. Assuming a D3 concentra-

tion in blood of 0.1 μM (CD3, measured 4 h after i.p. injection) calculation of binding to AGP

according to Eq (1) predicts a free fraction of 8.3%. For HSA, the KD was above the detection

limit of the kit (> 1.4 mM) indicating very low affinity of D3 to HSA. Nevertheless, calculation

of the free fraction with an assumed KD of 1.4 mM resulted in 68.3% free D3. Taken together,

using Eq (2), the estimated free fraction of D3 in plasma was calculated to be approximately

8%.

Discussion

In the current study we have analysed the distribution of the D-enantiomeric peptide D3 after

single intravenous, intraperitoneal and per oral administration, as well as continuous dosing

Fig 4. Mean pharmacokinetic profiles of 3H-D3 in organs and plasma after i.p., p.o. and i.v. administration. 3H-D3 (5 μCi) mixed with D3 in a total
concentration of 3.5 mg/kg (i.v.) or 10.5 mg/kg (i.p. and p.o.) was applied per mouse. D3 concentrations are shown as percentage of injected dose per gram
tissue or milliliter plasma (%ID/g or %ID/ml) dependent of time after administration. Mean values from 3 mice are shown.

doi:10.1371/journal.pone.0128553.g004
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via intraperitoneally implanted osmotic pumps. To the best of our knowledge, this is the first

report of a comprehensive pharmacokinetic study of a peptide consisting solely of D-enantio-

meric amino acid residues in rodents demonstrating excellent proteolytic stability, long plasma

half-life and very high oral bioavailability.

D3 showed high proteolytic resistance exactly as it was shown in vitro previously with other

all-D-peptides [14–16]. Thanks to this stability, metabolites can be neglected and the measured
3H radioactivity represents the concentration of D3 after administration in vivo.

Estimated terminal plasma half-lives of D3 were between 32 and 41 h and were thus much

higher than those reported for L-enantiomeric peptides which are typically only a few minutes

[25]. Four hours after administration, irrespective of the administration routes, the temporal

distribution of D3 in brain closely followed that in plasma resulting in brain/plasma ratios be-

tween 0.7 and 1.0 (Fig 5). While substances with a brain/plasma ratio larger than 0.3 are con-

sidered to have sufficient access to the central nervous system [26], our results suggest that D3

efficiently overcomes the blood-brain barrier.

Interestingly, by p.o. administration of D3, in spite of only a small rate of D3 being absorbed

via the enteric tract, the bioavailability was 58.3% (Table 1), which is relatively high in compari-

son to that of L-peptide drugs, which were described to be less than 1% without delivery en-

hancement [27–30]. This finding can be explained by slow oral absorption of D3 and

particularly long terminal half-life in plasma resulting in high AUC-values after p.o.

Table 1. Pharmacokinetic parameters for D3 from noncompartmental analysis of plasma.

Parameter Units i.v. (3.5 mg/kg) i.p. (10.5 mg/kg) p.o. (10.5 mg/kg)

Tmax min 3 10 240

Cmax μg/ml 7.75 14 0.45

Cmax/D μg/ml/mg 77.5 46.7 1.48

AUCC0-last min*μg/ml 679 1763 1095

MRTC0-last min 547 527 1718

Lambda_z 1/min 0.00036 0.00028 0.00028

HL_Lambda_z min 1907 2471 2439

AUCC0-inf min*μg/ml 869 2404 1521

MRTC0-inf min 1658 2104 3430

Vz ml 317 445 684

Cl ml/min 0.115 N.A. N.A.

Vss ml 190 N.A. N.A.

Bioavailability % N.A. 92.2 58.3

N.A.: Parameters not applicable for this administration route. For abbreviations see methods section.

doi:10.1371/journal.pone.0128553.t001

Table 2. Pharmacokinetic parameters for D3 from noncompartmental analysis of brain.

Parameter Units i.v. (3.5 mg/kg) i.p. (10.5 mg/kg) p.o. (10.5 mg/kg)

Tmax min 3 20 240

Cmax μg/g 0.283 0.665 0.390

Cmax/D μg/g/mg 2.83 2.22 1.30

AUCC0-last min*μg/g 275 643 935

MRTC0-last min 1173 1108 1693

For abbreviations see methods section.

doi:10.1371/journal.pone.0128553.t002
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administration (Table 1). Low concentrations of D3 as found in kidney and liver after p.o. ad-

ministration are desirable because this lowers the risk of possible intoxication of important or-

gans. With absorption enhancers and a more suitable formulation of D3, even higher oral

bioavailabilities seem to be feasible. Due to the observed high stability of D3 against proteolysis

under biological conditions and its hydrophilic properties, elimination via biliary excretion

(without re-absorption) and renal clearance in unchanged form could be expected.

Estimated volumes of distribution were 11.1 (i.v.), 15.6 (i.p.) and 24.0 l/kg (p.o.), respectively

considering the body weight of the mice (28.5 g in average). The total body water in C57Bl/6

mice is approximately 0.6 l/kg [31], suggesting a distribution of D3 beyond the body fluid and

some uptake in peripheral tissues.

Plasma volume of distribution at steady state was also high with 191 ml and 6.69 l/kg con-

sidering the body weight of the mice and the fraction of unbound D3 in plasma was predicted

to be around 8%. High volume of distribution promotes low plasma clearance, which in our

study was approximately between 0.12–0.19 ml/min observed in all routes of administration.

In summary, the current study demonstrates high proteolytic stability for the D-enantio-

meric peptide D3. Furthermore, D3 enters the brain very efficiently and shows high oral bio-

availability. The terminal half-life in mice after p.o. administration was approximately 41 hours

with a brain/plasma ratio between 0.7 and 1.0, and a bioavailability of about 60%.

Fig 5. Temporal distribution of brain/plasma ratio of 3H-D3 after different administration routes. Following bolus dose administration, low brain/plasma
ratios were found at the starting time points. After 4 hours, the ratios reached relative high values and varied between 0.7–1.0. Upon i.p. pump implantation
the ratio increased constantly with time.

doi:10.1371/journal.pone.0128553.g005
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Fig 6. Distribution of 3H-D3 after p.o. administration in organs and plasma. 20 min after gavaging of 100 μl, 5 μCi 3H-D3 with a total D3 concentration of
10.5 mg/kg, most of the radioactivity was located in the middle of small intestine (intestine 2 and 3); 4 hours later, it spread to the lower intestinal tract. Of note
is the high concentration of D3 observed in the appendix. At this time point, D3 could already be detected in feces. In comparison to the gastrointestinal tract,
the amount of D3 in other organs or plasma after p.o. administration was very low.

doi:10.1371/journal.pone.0128553.g006

Fig 7. Concentration of 3H-D3 in kidney, liver, brain and plasma administered via i.p. implanted osmotic pump. Alzet mini pumps with a delivery rate
of 0.3 mg D3 (plus 5 μCi 3H-D3) per 24 hours were implanted i.p. and organs were sampled after 2 to 6 days. Similar to bolus i.p. administration, more 3H-D3
was found in kidney than in liver (A), whereas D3 concentrations in plasma and brain were considerably lower (B). The concentration of D3 was increasing
linearly over time suggesting that the saturation concentration in the respective organs and plasma was not reached by 6 days of continuous dosing.

doi:10.1371/journal.pone.0128553.g007
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In our previous studies, D3 already proved to be therapeutically active in reversing cognitive

deficits and amyloid plaque load in vivo. Given its high oral bioavailability, suitably formulated

D3 with multiple dosing might be a promising drug candidate against Alzheimer’s disease.

Supporting Information

S1 File. ARRIVE Checklist. Completed “The ARRIVE Guidelines Checklist” for reporting ani-

mal data in this manuscript.

(DOCX)

Acknowledgments

We thank Michael Schöneck, Nicole Niemietz and Daniela Schumacher for excellent technical

assistance and Dr. Dagmar Jürgens for discussions on the data analysis.

Author Contributions

Conceived and designed the experiments: NJ LL JB LGMC NJS JK KJL DW AW. Performed

the experiments: NJ LL JP ES. Analyzed the data: NJ LL JP TZ JM DWAW.Wrote the paper:

NJ LL NJS JB DWAW.

References
1. Berchtold NC, Cotman CW. Evolution in the conceptualization of dementia and Alzheimer's disease:

Greco-Roman period to the 1960s. Neurobiology of aging. 1998; 19(3):173–89. Epub 1998/07/14.
PMID: 9661992.

2. Fletcher LC, Burke KE, Caine PL, Rinne NL, Braniff CA, Davis HR, et al. Diagnosing Alzheimer's dis-
ease: are we any nearer to useful biomarker-based, non-invasive tests? GMS health technology as-
sessment. 2013; 9:Doc01. Epub 2013/06/12. doi: 10.3205/hta000107 PMID: 23755087; PubMed
Central PMCID: PMC3677379.

3. Nygaard HB. Current and emerging therapies for Alzheimer's disease. Clinical therapeutics. 2013; 35
(10):1480–9. Epub 2013/10/22. doi: 10.1016/j.clinthera.2013.09.009 PMID: 24139420.

4. TD B. Alzheimer Disease Overview. 1993. In: GeneReviews(R) [Internet]. University of Washington,
Seattle.

5. Mikulca JA, Nguyen V, Gajdosik DA, Teklu SG, Giunta EA, Lessa EA, et al. Potential novel targets for
Alzheimer pharmacotherapy: II. Update on secretase inhibitors and related approaches. Journal of clin-
ical pharmacy and therapeutics. 2014; 39(1):25–37. Epub 2013/12/10. doi: 10.1111/jcpt.12112 PMID:
24313554.

Fig 8. The bound D3 (in dpm) over the protein concentration as determined using the TRANSILXL kits.
Each sample contained 5 μMD3 added to varying concentrations of AGP or HSA. (A) AGP fitted to the
Michaelis Menten equation (red). (B) The binding of D3 to HSA was below the detection limit of the kit (KD >

1.4 mM).

doi:10.1371/journal.pone.0128553.g008

Pharmacokinetic Study of the D-Peptide D3

PLOSONE | DOI:10.1371/journal.pone.0128553 June 5, 2015 13 / 15



6. Stockley JH, O'Neill C. Understanding BACE1: essential protease for amyloid-beta production in Alz-
heimer's disease. Cellular and molecular life sciences: CMLS. 2008; 65(20):3265–89. Epub 2008/08/
13. doi: 10.1007/s00018-008-8271-3 PMID: 18695942.

7. Selkoe DJ. Alzheimer's disease: genes, proteins, and therapy. Physiological reviews. 2001; 81(2):741–
66. Epub 2001/03/29. PMID: 11274343.

8. Bitan G, Kirkitadze MD, Lomakin A, Vollers SS, Benedek GB, Teplow DB. Amyloid beta-protein (Abeta)
assembly: Abeta 40 and Abeta 42 oligomerize through distinct pathways. Proceedings of the National
Academy of Sciences of the United States of America. 2003; 100(1):330–5. Epub 2002/12/31. doi: 10.
1073/pnas.222681699 PMID: 12506200; PubMed Central PMCID: PMC140968.

9. Kayed R, Lasagna-Reeves CA. Molecular mechanisms of amyloid oligomers toxicity. Journal of Alzhei-
mer's disease: JAD. 2013; 33 Suppl 1:S67–78. Epub 2012/04/26. doi: 10.3233/JAD-2012-129001
PMID: 22531422.

10. Tamaoka A. [The pathophysiology of Alzheimer's disease with special reference to "amyloid cascade
hypothesis"]. Rinsho byori The Japanese journal of clinical pathology. 2013; 61(11):1060–9. Epub
2014/01/24. PMID: 24450113.

11. Schenk D, Basi GS, Pangalos MN. Treatment strategies targeting amyloid beta-protein. Cold Spring
Harbor perspectives in medicine. 2012; 2(9):a006387. Epub 2012/09/07. doi: 10.1101/cshperspect.
a006387 PMID: 22951439; PubMed Central PMCID: PMC3426815.

12. Citron M. Alzheimer's disease: strategies for disease modification. Nature reviews Drug discovery.
2010; 9(5):387–98. doi: 10.1038/nrd2896 PMID: 20431570

13. Sun N, Funke SA, Willbold D. A Survey of Peptides with Effective Therapeutic Potential in Alzheimer's
Disease Rodent Models or in Human Clinical Studies. Mini-Rev Med Chem. 2012; 12(5):388–98.
PMID: ISI:000303103600005.

14. Liu M, Li C, Pazgier M, Mao Y, Lv Y, Gu B, et al. D-peptide inhibitors of the p53-MDM2 interaction for
targeted molecular therapy of malignant neoplasms. Proceedings of the National Academy of Sciences
of the United States of America. 2010; 107(32):14321–6. Epub 2010/07/28. doi: 10.1073/pnas.
1008930107 PMID: 20660730; PubMed Central PMCID: PMC2922601.

15. Zawadzke LE, Berg JM. A Racemic Protein. Journal of the American Chemical Society. 1992; 114
(10):4002–3. doi: 10.1021/Ja00036a073 PMID: ISI:A1992HT80100073.

16. Milton RCD, Milton SCF, Kent SBH. Total Chemical Synthesis of a D-Enzyme—the Enantiomers of
Hiv-1 Protease Show Demonstration of Reciprocal Chiral Substrate-Specificity. Science. 1992; 256
(5062):1445–8. doi: 10.1126/science.1604320 PMID: ISI:A1992HX33700036.

17. Wiesehan K, Willbold D. Mirror-image phage display: aiming at the mirror. Chembiochem: a European
journal of chemical biology. 2003; 4(9):811–5. Epub 2003/09/10. doi: 10.1002/cbic.200300570 PMID:
12964153.

18. Schumacher TN, Mayr LM, Minor DL Jr., Milhollen MA, Burgess MW, Kim PS. Identification of D-pep-
tide ligands through mirror-image phage display. Science. 1996; 271(5257):1854–7. PMID: 8596952

19. van Groen T, Kadish I, Wiesehan K, Funke SA, Willbold D. In vitro and in vivo staining characteristics of
small, fluorescent, Abeta42-binding D-enantiomeric peptides in transgenic ADmouse models. Chem-
MedChem. 2009; 4(2):276–82. Epub 2008/12/17. doi: 10.1002/cmdc.200800289 PMID: 19072935.

20. van Groen T, Kadish I, Funke SA, Bartnik D, Willbold D. Treatment with D3 removes amyloid deposits,
reduces inflammation, and improves cognition in aged AbetaPP/PS1 double transgenic mice. J Alzhei-
mers Dis. 2013; 34(3):609–20. Epub 2012/12/29. doi: 10.3233/JAD-121792 PMID: 23271316.

21. van Groen T, Kadish I, Funke A, Bartnik D, Willbold D. Treatment with Abeta42 binding D-amino acid
peptides reduce amyloid deposition and inflammation in APP/PS1 double transgenic mice. Advances
in protein chemistry and structural biology. 2012; 88:133–52. Epub 2012/07/21. doi: 10.1016/B978-0-
12-398314-5.00005-2 PMID: 22814708.

22. Aileen Funke S, van Groen T, Kadish I, Bartnik D, Nagel-Steger L, Brener O, et al. Oral treatment with
the d-enantiomeric peptide D3 improves the pathology and behavior of Alzheimer's Disease transgenic
mice. ACS chemical neuroscience. 2010; 1(9):639–48. Epub 2010/09/15. doi: 10.1021/cn100057j
PMID: 22778851; PubMed Central PMCID: PMC3368690.

23. van Groen T, Wiesehan K, Funke SA, Kadish I, Nagel-Steger L, Willbold D. Reduction of Alzheimer's
disease amyloid plaque load in transgenic mice by D3, A D-enantiomeric peptide identified by mirror
image phage display. ChemMedChem. 2008; 3(12):1848–52. Epub 2008/11/19. doi: 10.1002/cmdc.
200800273 PMID: 19016284.

24. Kilkenny C, BrowneWJ, Cuthill IC, Emerson M, Altman DG. Improving Bioscience Research Reporting:
The ARRIVE Guidelines for Reporting Animal Research. Plos Biol. 2010; 8(6). ARTN e1000412 doi:
10.1371/journal.pbio.1000412 PMID: ISI:000279355600022.

Pharmacokinetic Study of the D-Peptide D3

PLOSONE | DOI:10.1371/journal.pone.0128553 June 5, 2015 14 / 15



25. Pollaro L, Heinis C. Strategies to prolong the plasma residence time of peptide drugs. MedChemComm.
2010; 1(5):319–24. doi: 10.1039/c0md00111b

26. Reichel A. The role of blood-brain barrier studies in the pharmaceutical industry. Current drug metabo-
lism. 2006; 7(2):183–203. Epub 2006/02/14. PMID: 16472107.

27. Wong TW. Design of oral insulin delivery systems. Journal of drug targeting. 2010; 18(2):79–92. Epub
2009/12/09. doi: 10.3109/10611860903302815 PMID: 19968567.

28. Takagi H, Hiroi T, Hirose S, Yang L, Takaiwa F. Rice seed ER-derived protein body as an efficient deliv-
ery vehicle for oral tolerogenic peptides. Peptides. 2010; 31(8):1421–5. Epub 2010/05/12. doi: 10.
1016/j.peptides.2010.04.032 PMID: 20457197.

29. Mason JM. Design and development of peptides and peptide mimetics as antagonists for therapeutic
intervention. Future medicinal chemistry. 2010; 2(12):1813–22. Epub 2011/03/25. doi: 10.4155/fmc.10.
259 PMID: 21428804.

30. Lalatsa A, Garrett NL, Ferrarelli T, Moger J, Schatzlein AG, Uchegbu IF. Delivery of Peptides to the
Blood and Brain after Oral Uptake of Quaternary Ammonium Palmitoyl Glycol Chitosan Nanoparticles.
Molecular pharmaceutics. 2012; 9(6):1764–74. doi: 10.1021/Mp300068j PMID: ISI:000304728700022.

31. ChapmanME, Hu L, Plato CF, Kohan DE. Bioimpedance spectroscopy for the estimation of body fluid
volumes in mice. American journal of physiology Renal physiology. 2010; 299(1):F280–3. Epub 2010/
05/14. doi: 10.1152/ajprenal.00113.2010 PMID: 20462974; PubMed Central PMCID: PMC2904176.

Pharmacokinetic Study of the D-Peptide D3

PLOSONE | DOI:10.1371/journal.pone.0128553 June 5, 2015 15 / 15


