000255572 001__ 255572
000255572 005__ 20240711101535.0
000255572 0247_ $$2doi$$a10.1016/j.ijhydene.2015.11.106
000255572 0247_ $$2ISSN$$a0360-3199
000255572 0247_ $$2ISSN$$a1879-3487
000255572 0247_ $$2WOS$$aWOS:000369461500048
000255572 037__ $$aFZJ-2015-05713
000255572 082__ $$a660
000255572 1001_ $$0P:(DE-Juel1)6697$$aReimer, Uwe$$b0$$eCorresponding author
000255572 245__ $$aWater distribution in high temperature polymer electrolyte fuel cells
000255572 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2016
000255572 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1454999709_7291
000255572 3367_ $$2DataCite$$aOutput Types/Journal article
000255572 3367_ $$00$$2EndNote$$aJournal Article
000255572 3367_ $$2BibTeX$$aARTICLE
000255572 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000255572 3367_ $$2DRIVER$$aarticle
000255572 520__ $$aIn this work a high temperature polymer electrolyte fuel cell based on a phosphoric acid doped polybenzimidazole membrane is operated at 160 °C on dry air and dry hydrogen. The anodic stoichiometry was varied to resemble typical operation with pure hydrogen or reformate gas. At the outlet of the fuel cell liquid water was collected by condensers. The resulting amounts of liquid water from cathode and anode were computationally analyzed. The results yielded an effective diffusion coefficient of water vapor of D≈2.7⋅10−7D≈2.7⋅10−7 m2 s−1, which is the average value for the cell based on the water partial pressures at the outlets. From the calculated water partial pressures at the anode and cathode it can be concluded that the concentration of phosphoric acid differs significantly within catalyst layer of the anode and cathode. Finally, the crossover of hydrogen and oxygen was shown to depend on the swelling of the membrane.
000255572 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000255572 588__ $$aDataset connected to CrossRef
000255572 7001_ $$0P:(DE-Juel1)145258$$aEhlert, Jannik$$b1
000255572 7001_ $$0P:(DE-Juel1)129863$$aJanssen, Holger$$b2
000255572 7001_ $$0P:(DE-Juel1)129883$$aLehnert, Werner$$b3
000255572 773__ $$0PERI:(DE-600)1484487-4$$a10.1016/j.ijhydene.2015.11.106$$gp. S0360319915305632$$n3$$p1837 - 1845$$tInternational journal of hydrogen energy$$v41$$x0360-3199$$y2016
000255572 8564_ $$uhttps://juser.fz-juelich.de/record/255572/files/1-s2.0-S0360319915305632-main.pdf$$yRestricted
000255572 8564_ $$uhttps://juser.fz-juelich.de/record/255572/files/1-s2.0-S0360319915305632-main.gif?subformat=icon$$xicon$$yRestricted
000255572 8564_ $$uhttps://juser.fz-juelich.de/record/255572/files/1-s2.0-S0360319915305632-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000255572 8564_ $$uhttps://juser.fz-juelich.de/record/255572/files/1-s2.0-S0360319915305632-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000255572 8564_ $$uhttps://juser.fz-juelich.de/record/255572/files/1-s2.0-S0360319915305632-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000255572 8564_ $$uhttps://juser.fz-juelich.de/record/255572/files/1-s2.0-S0360319915305632-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000255572 909CO $$ooai:juser.fz-juelich.de:255572$$pVDB
000255572 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)6697$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000255572 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129863$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000255572 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129883$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000255572 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000255572 9141_ $$y2016
000255572 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000255572 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000255572 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J HYDROGEN ENERG : 2014
000255572 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000255572 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000255572 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000255572 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000255572 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000255572 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000255572 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000255572 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000255572 920__ $$lyes
000255572 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000255572 980__ $$ajournal
000255572 980__ $$aVDB
000255572 980__ $$aUNRESTRICTED
000255572 980__ $$aI:(DE-Juel1)IEK-3-20101013
000255572 981__ $$aI:(DE-Juel1)ICE-2-20101013