000255613 001__ 255613
000255613 005__ 20210129220509.0
000255613 0247_ $$2doi$$a10.3390/rs70912041
000255613 0247_ $$2Handle$$a2128/9274
000255613 0247_ $$2WOS$$aWOS:000362511400050
000255613 0247_ $$2altmetric$$aaltmetric:4528529
000255613 037__ $$aFZJ-2015-05752
000255613 041__ $$aEnglish
000255613 082__ $$a620
000255613 1001_ $$0P:(DE-Juel1)129476$$aJadoon, Khan Zaib$$b0$$eCorresponding author
000255613 245__ $$aTemporal Monitoring of the Soil Freeze-Thaw Cycles over a Snow-Covered Surface by Using Air-Launched Ground-Penetrating Radar
000255613 260__ $$aBasel$$bMDPI$$c2015
000255613 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1442831264_28367
000255613 3367_ $$2DataCite$$aOutput Types/Journal article
000255613 3367_ $$00$$2EndNote$$aJournal Article
000255613 3367_ $$2BibTeX$$aARTICLE
000255613 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000255613 3367_ $$2DRIVER$$aarticle
000255613 520__ $$aWe tested an off-ground ground-penetrating radar (GPR) system at a fixed location over a bare agricultural field to monitor the soil freeze-thaw cycles over a snow-covered surface. The GPR system consisted of a monostatic horn antenna combined with a vector network analyzer, providing an ultra-wideband stepped-frequency continuous-wave radar. An antenna calibration experiment was performed to filter antenna and back scattered effects from the raw GPR data. Near the GPR setup, sensors were installed in the soil to monitor the dynamics of soil temperature and dielectric permittivity at different depths. The soil permittivity was retrieved via inversion of time domain GPR data focused on the surface reflection. Significant effects of soil dynamics were observed in the time-lapse GPR, temperature and dielectric permittivity measurements. In particular, five freeze and thaw events were clearly detectable, indicating that the GPR signals respond to the contrast between the dielectric permittivity of frozen and thawed soil. The GPR-derived permittivity was in good agreement with sensor observations. Overall, the off-ground nature of the GPR system permits non-invasive time-lapse observation of the soil freeze-thaw dynamics without disturbing the structure of the snow cover. The proposed method shows promise for the real-time mapping and monitoring of the shallow frozen layer at the field scale.
000255613 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000255613 7001_ $$0P:(DE-Juel1)129553$$aWeihermüller, Lutz$$b1
000255613 7001_ $$0P:(DE-HGF)0$$aMcCabe, M. F.$$b2
000255613 7001_ $$0P:(DE-HGF)0$$aMoghadas, D.$$b3
000255613 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b4
000255613 7001_ $$0P:(DE-HGF)0$$aLambot, S.$$b5
000255613 773__ $$0PERI:(DE-600)2513863-7$$a10.3390/rs70912041$$p12041-12056$$tRemote sensing$$v7$$x2072-4292$$y2015
000255613 8564_ $$uhttps://juser.fz-juelich.de/record/255613/files/remotesensing-07-12041-v2.pdf$$yOpenAccess
000255613 8564_ $$uhttps://juser.fz-juelich.de/record/255613/files/remotesensing-07-12041-v2.gif?subformat=icon$$xicon$$yOpenAccess
000255613 8564_ $$uhttps://juser.fz-juelich.de/record/255613/files/remotesensing-07-12041-v2.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000255613 8564_ $$uhttps://juser.fz-juelich.de/record/255613/files/remotesensing-07-12041-v2.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000255613 8564_ $$uhttps://juser.fz-juelich.de/record/255613/files/remotesensing-07-12041-v2.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000255613 8564_ $$uhttps://juser.fz-juelich.de/record/255613/files/remotesensing-07-12041-v2.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000255613 909CO $$ooai:juser.fz-juelich.de:255613$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000255613 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bREMOTE SENS-BASEL : 2014
000255613 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000255613 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000255613 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000255613 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000255613 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000255613 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000255613 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000255613 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000255613 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000255613 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000255613 9141_ $$y2015
000255613 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129553$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000255613 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000255613 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000255613 920__ $$lyes
000255613 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000255613 980__ $$ajournal
000255613 980__ $$aVDB
000255613 980__ $$aUNRESTRICTED
000255613 980__ $$aI:(DE-Juel1)IBG-3-20101118
000255613 9801_ $$aFullTexts